Citation: HAO Hai-Yan, LIU Zhen, ZU Li-Li. Laser-Induced Fluorescence Spectra of the Photolyzed Products of C2H5SSC2H5 by 266 nm Laser[J]. Acta Physico-Chimica Sinica, ;2015, 31(11): 2029-2035. doi: 10.3866/PKU.WHXB201509231 shu

Laser-Induced Fluorescence Spectra of the Photolyzed Products of C2H5SSC2H5 by 266 nm Laser

  • Corresponding author: ZU Li-Li, 
  • Received Date: 20 July 2015
    Available Online: 22 September 2015

    Fund Project: 国家自然科学基金(21373033, 21173024)资助项目 (21373033, 21173024)

  • Organic sulfides are an atmospheric pollutant that photolyze in the atmosphere, causing additional pollution. The S―S bond exists not only in organic sulfides but also in some proteins such as L-cystine, and this bond is crucial to the bioactivity of this protein. In this work, we studied C2H5SSC2H5 photolysis at 266 nm, which is the quadruplicated frequency of the common Nd:YAG laser. The laser-induced fluorescence (LIF) spectra detected the photolyzed products, C2H5S radical. Our results show that the C2H5S radical was mainly created by dissociation of the S―S bond in C2H5SSC2H5. We determined the potential energy curves of the S―S, C―S, and C―C bonds in C2H5SSC2H5 at the B3LYP/6-311++G(d,p) level, finding that photolysis at 266 nm caused the S―S and C―S bonds of C2H5SSC2H5 to dissociate at the ground ???2029-1??? state. Nevertheless, photolysis at 266 nm did not photolyze the C―C bond of C2H5SSC2H5. By optimizing the Cs geometry of the C2H5S radical at the ???2029-1??? state and the ???2029-2??? state, we determined the ???2029-2???-???2029-1??? adiabatic transition energy at the CASSCF/6-311++G(d,p) level, and then studied the LIF spectra of the C2H5S radical. The main pathway is dissociation of the S―S bond of C2H5SSC2H5, though the C―S bond in a few C2H5SSC2H5 molecules did dissociate.
  • 加载中
    1. [1]

      (1) Orr, W. L.; White, C. M. Geochemistry of Sulfur in Fossil Fuels; American Chemical Society: Washington, DC (US), 1990; pp 10-40.

    2. [2]

      (2) Seinfeld, J. H.; Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, New Jersey, 2012; pp 2003-2020.

    3. [3]

      (3) Barnes, I.; Hjorth, J.; Mihalopoulos, N. Chem. Rev. 2006, 106 (3), 940. doi: 10.1021/cr020529+

    4. [4]

      (4) Andreae, M. O. Mar. Chem. 1990, 30, 1. doi: 10.1016/0304-4203(90)90059-L

    5. [5]

      (5) Song, W. G.; Li, B. J.; Liu, K. Q. Acta Horticulturae Sinica 2004, 31 (2), 263. [宋卫国, 李宝聚, 刘开启. 园艺学报, 2004, 31 (2), 263.]

    6. [6]

      (6) Jansen, H.; Mü ller, B.; Knobloch, K. Planta Med. 1989, 55 (5), 440. doi: 10.1055/s-2006-962060

    7. [7]

      (7) Yu, W. T.; Lu, D. Q.; Li, H. 2004, 21, 795. [于文涛, 卢定强. 精细化工, 2004, 21, 795.]

    8. [8]

      (8) Silva Filho, E. C.; Lima, L. C.; Silva, F. C.; Sousa, K. S.; Fonseca, M. G.; Santana, S. A. Carbohydr. Polym. 2013, 92 (2), 1203. doi: 10.1016/j.carbpol.2012.10.031

    9. [9]

      (9) Matsumura, S.; Kihara, N.; Takata, T. Macromolecules 2001, 34 (9), 2848. doi: 10.1021/ma001666g

    10. [10]

      (10) Visscher, P. T.; Taylor, B. F. Appl. Environ. Microb. 1993, 59 (12), 4083.

    11. [11]

      (11) Iozzi, M. F.; Helgaker, T. J. Phys. Chem. A 2011, 115 (11), 2308. doi: 10.1021/jp109428g

    12. [12]

      (12) Zhang, Y. H. P.; Evans, B. R.; Mielenz, J. R.; Hopkins, R. C.; Adams, M. W. PloS One 2007, 2 (5), e456.

    13. [13]

      (13) Karolczak, J.; Grev, R. S.; Clouthier, D. J. J. Chem. Phys. 1994, 101 (2), 891. doi: 10.1063/1.467742

    14. [14]

      (14) Johnson, M.; Zare, R.; Rostas, J.; Leach, S. J. Chem. Phys. 1984, 80 (6), 2407. doi: 10.1063/1.446991

    15. [15]

      (15) Nakajima, M.; Miyoshi, A.; Sumiyoshi, Y.; Endo, Y. J. Chem. Phys. 2012, 136 (18), 184311. doi: 10.1063/1.4708809

    16. [16]

      (16) Carter, C. C.; Atwell, J. R.; Gopalakrishnan, S.; Miller, T. A. J. Phys. Chem. A 2000, 104 (40), 9165. doi: 10.1021/jp001835z

    17. [17]

      (17) Nakajima, M.; Toyoshima, H.; Sato, S.; Tanaka, K.; Hoshina, K.; Kohguchi, H.; Sumiyoshi, Y.; Ohshima, Y.; Endo, Y. J. Chem. Phys. 2013, 138 (16), 164309. doi: 10.1063/1.4802003

    18. [18]

      (18) Kohguchi, H.; Ohshima, Y.; Endo, Y. J. Chem. Phys. 1997, 106 (13), 5429. doi: 10.1063/1.473568

    19. [19]

      (19) Hoshina, K.; Kohguchi, H.; Ohshima, Y.; Endo, Y. J. Chem. Phys. 1998, 108 (9), 3465. doi: 10.1063/1.475746

    20. [20]

      (20) Chalyavi, N.; Troy, T. P.; Nakajima, M.; Gibson, B. A.; Nauta, K.; Sharp, R. G.; Kable, S. H.; Schmidt, T. W. J. Phys. Chem. A 2011, 115 (27), 7959. doi: 10.1021/jp203638h

    21. [21]

      (21) Wine, P.; Nicovich, J.; Hynes, A.; Wells, J. J. Phys. Chem. 1986, 90 (17), 4033. doi: 10.1021/j100408a041

    22. [22]

      (22) Colin, R.; Goldfinger, P.; Jeunehomme, M. Trans. Faraday Soc. 1964, 60, 306. doi: 10.1039/tf9646000306

    23. [23]

      (23) Nourbakhsh, S.; Yin, H. M.; Liao, C. L.; Ng, C. Y. A. Chem. Phys. Lett. 1991, 183 (5), 348. doi: 10.1016/0009-2614(91)90391-L

    24. [24]

      (24) Nourbakhsh, S.; Yin, H. M.; Liao, C. L.; Ng, C. Y. Chem. Phys. Lett. 1992, 190 (5), 469. doi: 10.1016/0009-2614(92)85175-A

    25. [25]

      (25) Peng, B.; Cao, J. R.; Wen, Y.; Zhong, X.; Zhang, J. M.; Gu, H. G.; Fang, W. G.; Wu, X. J.; Zhu, Q. H. Acta Phys. -Chim. Sin. 1988, 4 (3), 225. [彭勃, 曹建如, 温晔, 钟宪, 张建明, 顾好刚, 方万全, 武小军, 朱起鹤. 物理化学学报, 1988, 4 (3), 225.] doi: 10.3866/PKU.WHXB19880301

    26. [26]

      (26) Ross, P. L.; Johnston, M. V. J. Phys. Chem. 1993, 97 (41), 10725. doi: 10.1021/j100143a034

    27. [27]

      (27) Balla, R. J.; Weiner, B. R.; Nelson, H. H. J. Am. Chem. Soc. 1987, 109 (16), 4804. doi: 10.1021/ja00250a008

    28. [28]

      (28) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Wallingford, CT: Gaussian Inc., 2004

    29. [29]

      (29) Hung, W. C.; Shen, M. Y.; Yu, C. H.; Lee, Y. P. J. Chem. Phys. 1996, 105 (14), 5722. doi: 10.1063/1.472543

    30. [30]

      (30) Nourbakhsh, S.; Liao, C. L.; Ng, C. J. Chem. Phys. 1990, 92 (11), 6587. doi: 10.1063/1.458295

    31. [31]

      (31) Zhao, H. Q.; Cheung, Y. S.; Liao, C. X.; Ng, C.; Li, W. K.; Chiu, S. W. J. Chem. Phys. 1996, 104 (1), 130. doi: 10.1063/1.470883

    32. [32]

      (32) Munk, J.; Pagsberg, P.; Ratajczak, E.; Sillesen, A. J. Phys. Chem. 1986, 90 (12), 2752. doi: 10.1021/j100403a038

    33. [33]

      (33) Quick, C., Jr.; Weston, R. E., Jr. J. Chem. Phys. 1981, 74 (9), 4951. doi: 10.1063/1.441748

  • 加载中
    1. [1]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Lingling LiZhe Chen . Charge transfer mechanism investigation of S-scheme photocatalyst using soft X-ray absorption spectroscopy. Acta Physico-Chimica Sinica, 2026, 42(4): 100215-0. doi: 10.1016/j.actphy.2025.100215

    4. [4]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    5. [5]

      Zheng LiuYuqing BianGraham DawsonJiawei ZhuKai Dai . Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(9): 111272-. doi: 10.1016/j.cclet.2025.111272

    6. [6]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

    7. [7]

      Jiajie GuJiaxiang GuLei Yu . Selenium and Alzheimer's disease. Chinese Chemical Letters, 2025, 36(8): 110727-. doi: 10.1016/j.cclet.2024.110727

    8. [8]

      Ziyi XiaoXinyi MaLinping WangHaobin HuEnzhou Liu . Efficient photocatalytic conversion H2S over NiS2/twinned-Mn0.5Cd0.5S Schottky/S-scheme homojunction in Na2S/Na2SO3 solution. Acta Physico-Chimica Sinica, 2026, 42(4): 100171-0. doi: 10.1016/j.actphy.2025.100171

    9. [9]

      Xibao LiYiyang WanFang DengYingtang ZhouPinghua ChenFan DongJizhou Jiang . Advances in Z-scheme and S-scheme heterojunctions for photocatalytic and photoelectrocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(10): 111418-. doi: 10.1016/j.cclet.2025.111418

    10. [10]

      Jinhui JiangJiaqi SunYongyi ChenLei ZhangPengyu Dong . W18O49/Al-doped SrTiO3 S-scheme heterojunction aided by the LSPR effect for full-spectrum solar light-driven photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100145-0. doi: 10.1016/j.actphy.2025.100145

    11. [11]

      Ze LuoYukun ZhuYadan LuoGuangmin RenYonghong WangHua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-0. doi: 10.1016/j.actphy.2025.100166

    12. [12]

      Bin FangJiaqi YangLimin WangHaoqin LiJiaying GuoJiaxin ZhangQingyuan GuoBo PengKedi LiuMiaomiao XiHua BaiLi FuLin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913

    13. [13]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    14. [14]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    15. [15]

      Chengxin ChenHongfei ShiXiaoyan CaiLiang MaoZhe Chen . Enhanced bifunctional photocatalytic performances for H2 evolution and HCHO elimination with an S-scheme CoWO4/CdIn2S4 heterojunction. Acta Physico-Chimica Sinica, 2025, 41(12): 100155-0. doi: 10.1016/j.actphy.2025.100155

    16. [16]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

    17. [17]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    18. [18]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    19. [19]

      Yanping QiuJiatong ZhangLinping LiYangqin GaoNing LiLei Ge . MOF-derived g-C3N4/ZnIn2S4 S-scheme heterojunction: interface-engineering enhanced photocatalytic NO conversion. Acta Physico-Chimica Sinica, 2026, 42(4): 100175-0. doi: 10.1016/j.actphy.2025.100175

    20. [20]

      Mengzhao LiuJie YinChengjian WangWeiji WangYuan GaoMengxia YanPing Geng . P doped Ni3S2 and Ni heterojunction bifunctional catalysts for electrocatalytic 5-hydroxymethylfurfural oxidation coupled hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(9): 111271-. doi: 10.1016/j.cclet.2025.111271

Metrics
  • PDF Downloads(56)
  • Abstract views(976)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return