Citation: YANG Mei-Ni, LIN Rui, FAN Ren-Jie, ZHAO Tian-Tian, ZENG Hao. Preparation and Application of Pt-Ni Catalysts Supported on Cobalt-Polypyrrole-Carbon for Fuel Cells[J]. Acta Physico-Chimica Sinica, ;2015, 31(11): 2131-2138. doi: 10.3866/PKU.WHXB201509171 shu

Preparation and Application of Pt-Ni Catalysts Supported on Cobalt-Polypyrrole-Carbon for Fuel Cells

  • Corresponding author: LIN Rui, 
  • Received Date: 22 May 2015
    Available Online: 17 September 2015

    Fund Project: 国家自然科学基金(21276199) (21276199)

  • By using pulse-microwave assisted chemical reduction, we prepared a Pt-Ni alloy supported on a cobalt-polypyrrole-carbon (Co-PPy-C) catalyst. The catalyst microstructure and morphology were characterized by using transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrocatalytic performance and durability of the catalysts were measured with cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The metal particles were well dispersed on the carbon support, and the particle size of PtNi/Co-PPy-C was about 1.77 nm. XRD showed that the Pt(111) diffraction peak was strongest, so the most of the Pt in the catalysts was in a face-centered cubic lattice. The electrochemical surface area (ECSA) of PtNi/Co-PPy-C (72.5 m2·g-1) was higher than that of Pt/C(JM) (56.9 m2·g-1). After an accelerated durability test for 5000 cycles, the particle size of PtNi/Co-PPy-C obviously increased. The degradation rate of ECSA and the mass activity (MA) of PtNi/Co-PPY-C were 38.2% and 63.9%, respectively. We applied the PtNi/Co-PPy-C catalyst after optimizing the membrane electrode assembly (MEA) with an area of 50 cm2. The fuel cell could be suitably operated at 70 ℃ with a back pressure of 50 kPa. At these conditions, the maximum power density of MEA by PtNi/Co-PPy-C was 523 mW·cm-2. The excellent performance of PtNi/Co-PPy-C makes it a promising catalyst for proton exchange membrane fuel cells (PEMFCs).
  • 加载中
    1. [1]

      (1) Zhang, J.; Tang, S. H.; Liao, L. Y.; Yu, W. F. Chin. J. Catal. 2013, 34, 1051. [张洁, 唐水花, 廖龙渝, 郁卫飞. 催化学报, 2013, 34, 1051.] doi: 10.1016/S1872-2067(12)60588-9

    2. [2]

      (2) Huang, Z.; Lin, R.; Fan, R. J.; Fan, Q. B.; Ma, J. X. Electrochim. Acta 2014, 139, 48.

    3. [3]

      (3) Shen, Q.; Hou, M.; Liang, D.; Zhou, Z. M.; Li, X. J.; Shao, Z. G.; Yi, B. L. J Power Sources 2009, 189 (2), 1114. doi: 10.1016/j.jpowsour.2008.12.075

    4. [4]

      (4) Yuasa, M.; Yamaguchi, A.; Itsuki, H.; Tanaka, K.; Yamamoto, M.; Oyaizu, K. Chem. Mater. 2005, 17 (17), 4278. doi: 10.1021/cm050958z

    5. [5]

      (5) Bashyam, R.; Zelenay, P. Nature 2006, 443 (7107), 63. doi: 10.1038/nature05118

    6. [6]

      (6) Fan, R. J.; Lin, R.; Huang, Z.; Zhao, T. T.; Ma, J. X. Acta Phys-Chim Sin. 2014, 30 (7), 1259. [范仁杰, 林瑞, 黄真, 赵天天, 马建新. 物理化学学报, 2014, 30 (7), 1259.] doi: 10.3866/PKU.WHXB201405045

    7. [7]

      (7) Dai, X. F.; Zhen, M. F.; Xu, P.; Shi, J. J.; Ma, C. Y.; Qiao, J. L. Acta Phys. -Chim. Sin. 2013, 29 (8), 1753. [戴先逢, 郑明富, 徐攀, 石晶晶, 马承禺, 乔锦丽. 物理化学学报, 2013, 29 (8), 1753.] doi: 10.3866/PKU.WHXB201306141

    8. [8]

      (8) Li, S.; Wang, J. T.; Chen, R. X.; Zhao, W.; Qian, L.; Pan, M. Acta Phys. -Chim. Sin. 2013, 29 (4), 792. [李赏, 王家堂, 陈锐鑫, 赵伟, 钱柳, 潘牧. 物理化学学报, 2013, 29 (4), 792.] doi: 10.3866/PKU.WHXB201302221

    9. [9]

      (9) Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Applied Catalysis B: Environmental 2005, 56 (1-2), 9. doi: 10.1016/j.apcatb.2004.06.021

    10. [10]

      (10) Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Atwan, M. H.; Tessema, M. M. J. Am. Chem. Soc. 2012, 134 (20), 8535. doi: 10.1021/ja300756y

    11. [11]

      (11) Loukrakpam, R.; Luo, J.; He, T.; Chen, Y. S.; Xu, Z. C.; Njoki, P. N.; Wanjala, B. N.; Fang, B.; Mott, D.; Yin, J.; Klar, J.; Powell, B.; Zhong, C. J. J. Phys. Chem. C 2011, 115 (5), 1682. doi: 10.1021/jp109630n

    12. [12]

      (12) Zhao, J.; Huang, S. Y.; Chen, W. X. Journal of Zhejiang Univiersity (Engineering Science) 2009, 43 (5), 962. [赵杰, 黄思玉, 陈卫祥. 浙江大学学报(工学版), 2009, 43 (5), 962.]

    13. [13]

      (13) Hsieh, C. T.; Lin, J. Y.; Wei, J. L. Int. J. Hydrog. Energy 2009, 34 (2), 685. doi: 10.1016/j.ijhydene.2008.11.008

    14. [14]

      (14) Harada, J.; Ohshima, K. Surface Science 1981, 106 (1), 51.

    15. [15]

      (15) Mokrane, S.; Makhloufi, L.; Alonso-Vante, N. J. Solid State Electr. 2008, 12 (5), 569. doi: 10.1007/s10008-007-0398-x

    16. [16]

      (16) Yuasa, M.; Oyaizu, K.; Murata, H.; Tanaka, K.; Yamamoto, M.; Sasaki, S. Electrochemistry 2007, 75 (10), 800. doi: 10.5796/electrochemistry.75.800

    17. [17]

      (17) Yang, M. N.; Lin, R.; Zhang, L.; Fan, R. J.; Ma, J. X. Chemical Industry and Engineering Progress 2014, 33 (12), 3230. [杨美妮, 林瑞, 张路, 范仁杰, 马建新. 化工进展, 2014, 33 (12), 3230.]

    18. [18]

      (18) Kim, K. T.; Hwang, J. T.; Kim, Y. G.; Chung, J. S. ChemInform 2010, 24 (14).

    19. [19]

      (19) Cui, X.; Lin, R.; Zhao, T. T.; Yang, M. N.; Ma, J. X. Chemical Industry and Engineering Progress 2014, 33 (1), 150. [崔鑫, 林瑞, 赵天天, 杨美妮, 马建新. 化工进展, 2014, 33 (1), 150.]

    20. [20]

      (20) Unni, S. M.; Dhavale, V. M.; Pillai, V. K.; Kurungot, S. H. J. Phys. Chem. C 2010, 114 (34), 14654. doi: 10.1021/jp104664t

    21. [21]

      (21) Li, H.; Tang, Y. H.; Wang, Z. W.; Shi, Z.; Wu, S. H.; Song, D. T.; Zhang, J. L.; Fatih, K.; Zhang, J. J.; Wang, H. J.; Liu, Z. S.; Abouatallah, R.; Mazza, A. J. Power Sources 2008, 178 (1), 103.

    22. [22]

      (22) Lin, R.; Cao, C. H.; Ma, J. X.; Gulzow, E.; Friedrich, K. A. Int. J. Hydrog. Energy 2012, 37 (4), 3373. doi: 10.1016/j.ijhydene.2011.11.046

    23. [23]

      (23) Yousfi-Steiner, N.; Mocoteguy, P.; Candusso, D.; Hissel, D.; Hernandez, A.; Aslanides, A. J. Power Sources 2008, 183 (1), 260. doi: 10.1016/j.jpowsour.2008.04.037

    24. [24]

      (24) Tang, W. C.; Lin, R.; Weng, Y. M.; Zhang, J. M.; Ma, J. X. Int. J. Hydrog. Energy 2013, 38 (25), 10985. doi: 10.1016/j.ijhydene.2013.01.099

    25. [25]

      (25) Dhanushkodi, S. R.; Kundu, S.; Fowler, M. W.; Pritzker, M. D. J. Power Sources 2014, 245, 1035. doi: 10.1016/j.jpowsour.2013.07.016

    26. [26]

      (26) Schmittinger, W.; Vahidi, A. J. Power Sources 2008, 180 (1), 1. doi: 10.1016/j.jpowsour.2008.01.070

  • 加载中
    1. [1]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    11. [11]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    16. [16]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    17. [17]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    18. [18]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    19. [19]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    20. [20]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

Metrics
  • PDF Downloads(48)
  • Abstract views(366)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return