Citation: YANG Jie, LI Yu-He, HU Hai-Long. Finely Controlling the Diameter of the TiO2 Nanowire Array by Micelles in the Reversed Micelle Reaction under Hydrothermal Condition[J]. Acta Physico-Chimica Sinica, ;2015, 31(11): 2207-2212. doi: 10.3866/PKU.WHXB201509152
-
We establish a model for growing titania nanowires arrays (TNAs) within micelles on the hydrophilic substrate of fluorine-doped tin oxide (FTO) in a reversed micelle reaction under hydrothermal conditions, and we discuss the mechanism that micelle size controlled the diameter in the TNAs growth progress. We produced TNAs with various diameters on FTO by adjusting the temperature, which changed the micelle size, and by using the crystal-plane suppressing effect of the Cl- ion. The volume ratio of the polar/nonpolar solvent barely influenced the nanowire diameter during growth. Based on this result, thinner TNAs can be prepared by using the restricting effect of the micelles and the crystal-plane suppressing effect of the Cl- ion. This method can also be used to synthesize other relative oxide nanomaterials.
-
-
[1]
(1) Cao, C.; Hu, C.; Wang, X.; Wang, S.; Tian, Y.; Zhang, H. Sensors and Actuators B: Chemical 2011, 156, 114. doi: 10.1016/j.snb.2011.03.080
-
[2]
(2) Inaba, M.; Oba, Y.; Niina, F.; Murota, Y.; Ogino, Y.; Tasaka, A.; Hirota, K. Journal of Power Sources 2009, 189, 580. doi: 10.1016/j.jpowsour.2008.10.001
-
[3]
(3) Kim, H. S.; Nguyen, D. T.; Shin, E. C.; Lee, J. S.; Lee, S. K.; Ahn, K. S.; Kang, S. H. Electrochimica Acta 2013, 114, 159. doi: 10.1016/j.electacta.2013.09.170
-
[4]
(4) Liao, M. Y.; Fang, L.; Xu, C. L.; Wu, F.; Huang, Q. L.; Saleem, M. Materials Science in Semiconductor Processing 2014, 24, 1. doi: 10.1016/j.mssp.2014.02.037
-
[5]
(5) Liu, G.; Zhang, M.; Zhang, D.; Gu, X.; Meng, F.; Wen, S.; Chen, Y.; Ruan, S. Applied Surface Science 2014, 315, 55. doi: 10.1016/j.apsusc.2014.07.115
-
[6]
(6) Yang, H. Y.; Cheng, X. L.; Zhang, X. F.; Zheng, Z. K.; Tang, X. F.; Xu, Y. M.; Gao, S.; Zhao, H.; Huo, L. H. Sensors and Actuators B: Chemical 2014, 205, 322. doi: 10.1016/j.snb.2014.08.092
-
[7]
(7) Cozzoli, P. D.; Kornowski, A.; Weller, H. Journal of the American Chemical Society 2003, 125, 14539. doi: 10.1021/ja036505h
-
[8]
(8) Nelson, J. Current Opinion in Solid State and Materials Science 2002, 6, 87. doi: 10.1016/S1359-0286(02)00006-2
-
[9]
(9) Sun, L.; Zuo, J.; Lai, Y. K.; Nie, C. G.; Lin, C. J. Acta Phys. -Chim.Sin. 2007, 23 (10), 1603. [孙岚, 左娟, 赖跃坤, 聂茶庚, 林昌建. 物理化学学报, 2007, 23 (10), 1603.] doi: 10.3866/PKU.WHXB20071021
-
[10]
(10) Han, Y.; Fan, C.; Wu, G.; Chen, H. Z.; Wang, M. The Journal of Physical Chemistry C 2011, 115, 13438. doi: 10.1021/jp201413m
-
[11]
(11) Kang, S. H.; Lee, W.; Kim, H. S. Materials Letters 2012, 85, 74. doi: 10.1016/j.matlet.2012.06.065
-
[12]
(12) Kumar, A.; Madaria, A. R.; Zhou, C. The Journal of Physical Chemistry C 2010, 114, 7787. doi: 10.1021/jp100491h
-
[13]
(13) Liu, B.; Aydil, E. S. Journal of the American Chemical Society 2009, 131, 3985. doi: 10.1021/ja8078972
-
[14]
(14) Wang, J.; Zhang, T.; Wang, D.; Pan, R.; Wang, Q.; Xia, H. Journal of Alloys and Compounds 2013, 551, 82 doi: 10.1016/j.jallcom.2012.09.113
-
[15]
(15) Zhou, Z.; Tang, H.; Sodano, H. A. ACS Applied Materials & Interfaces 2013, 5, 11894. doi: 10.1021/am403587q
-
[16]
(16) Zhou, Z. J.; Fan, J. Q.; Wang, X.; Zhou, W. H.; Du, Z. L.; Wu, S. X. ACS Applied Materials & Interfaces 2011, 3, 4349. doi: 10.1021/am201001t
-
[17]
(17) Zhen, W.; Yu, Y.; Tao, H.; Aishui, Y. Int. J. Electrochem. Sci. 2011, 6, 1871.
-
[18]
(18) Feng, X.; Shankar, K.; Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A. Nano Letters 2008, 8, 3781. doi: 10.1021/nl802096a
-
[19]
(19) Jiang, D.; Hao, Y.; Shen, R.; Ghazarian, S.; Ramos, A.; Zhou, F. ACS Applied Materials & Interfaces 2013, 5, 11906. doi: 10.1021/am4036042
-
[20]
(20) Kong, E. H.; Yoon, Y. H.; Chang, Y. J.; Jang, H. M. Materials Chemistry and Physics 2014, 143, 1440. doi: 10.1016/j.matchemphys.2013.11.060
-
[21]
(21) Wei, Z.; Li, R.; Huang, T.; Yu, A. Electrochimica Acta 2011, 56, 7696. doi: 10.1016/j.electacta.2011.06.038
-
[22]
(22) Zhang, M.; Li, D.; Zhou, J.; Chen, W.; Ruan, S. Journal of Alloys and Compounds 2015, 618, 233. doi: 10.1016/j.jallcom. 2014.07.040
-
[23]
(23) Tong, J. G.; Wang, Y. P.; Su , Y. K. Fundamental of Thermo-technology; Shanghai Jiao Tong University Press: Shanghai, 2008: p 230. [童钧耕, 王阳平, 苏永康. 热工基础. 上海: 上海交通大学出版社, 2008: 230.]
-
[24]
(24) Liu, G. Q.; Ma, L. X.; Liu, J. Chemical Property Data Sheet; Chemical Industry Press: Beijing, 2002: p 311. [刘光启, 马连湘, 刘杰. 化学化工物性数据手册. 北京: 化学工业出版社, 2002: 311.]
-
[25]
(25) Fu, X. C.; Shen, W. X.; Yao, T. Y.; Hou, W. H. Physical Chemistry; Higher Education Press: Beijing, 2006: p 315. [傅献彩, 沈文霞, 姚天扬, 候文华. 物理化学. 北京: 高等教育出版社, 2006: 315.]
-
[1]
-
-
[1]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[2]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[3]
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
-
[4]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[5]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[6]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[7]
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
-
[8]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[9]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[10]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[11]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[12]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[13]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[14]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[15]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
-
[16]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[17]
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
-
[18]
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
-
[19]
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
-
[20]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[1]
Metrics
- PDF Downloads(82)
- Abstract views(452)
- HTML views(11)