Citation:
	            
		            DAI  Wei, CHEN  Liu-Yang, ZHENG  Li-Min, YANG  Ming-Hui. Application of the Multi-Center Partition Method to Construct the Potential Energy Surface of H3[J]. Acta Physico-Chimica Sinica,
							;2015, 31(11): 2077-2082.
						
							doi:
								10.3866/PKU.WHXB201509143
						
					
				
					
				
	        
- 
	                	The potential energy surface plays an important role in studying molecular reaction dynamics. In this work, a new method, namely the “multi-center partition” method, is proposed to construct the potential energy surface of H3. The optimized function is first determined by comparing the London-Eyring-Polanyi-Sato (LEPS) potential, the many-body expansion potential, and the permutation-invariant polynomial potential. This comparison shows that the permutation-invariant polynomial fitting proposed by Bowman is the most efficient method for describing the topology of the H3 system. The quasi-classical trajectory method is used to analyze the rationality of those potential energy surfaces. By combining the multi-center partition method with the permutation-invariant polynomial method, the accuracy of the H3 molecular potential energy surface is greatly improved and could possibly be used in the fitting of potential energy surfaces in other systems.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
(1) Sun, Z. F.; Gao, Z.; Wu, X. K.; Tang, G. Q.; Zhou, X. G.; Liu, S. L. Acta Phys. -Chim. Sin. 2015, 31, 829. [孙中发, 高治, 吴向坤, 唐国强, 周晓国, 刘世林. 物理化学学报, 2015, 31, 829.] doi: 10.3866/PKU.WHXB201503041
 - 
			
                    [2]
                
			
(2) Li, W.; Qu, J. Y.; Zhao, X. S. Acta Phys. -Chim. Sin. 2003, 19 (8), 751. [李巍, 屈军艳, 赵新生. 物理化学学报, 2003, 19 (8), 751.] doi: 10.3866/PKU.WHXB20030816
 - 
			
                    [3]
                
			
(3) Le, H. A.; Frankcombe, T. J.; Collins, M. A. J. Phys. Chem. A 2010, 114 (40), 10783. doi: 10.1021/jp1060182
 - 
			
                    [4]
                
			
(4) Ramazani, S.; Frankcombe, T. J.; Andersson, S.; Collins, M. A. J. Chem. Phys. 2009, 130 (24), 244302. doi: 10.1063/1.3156805
 - 
			
                    [5]
                
			
(5) Moyano, G. E.; Jones, S. A.; Collins, M. A. J. Chem. Phys. 2006, 124 (12), 124318. doi: 10.1063/1.2181571
 - 
			
                    [6]
                
			
(6) Moyano, G. E.; Collins, M. A. Theor. Chem. Acc. 2005, 113 (4), 225. doi: 10.1007/s00214-004-0626-8
 - 
			
                    [7]
                
			
(7) Evenhuis, C. R.; Collins, M. A.; Lin, X.; Zhang, O. H. Amer. Chem. Soc. 2004, 227, 259.
 - 
			
                    [8]
                
			
(8) Moyano, G. E.; Pearson, D.; Collins, M. A. J. Chem. Phys. 2004, 121 (24), 12396. doi: 10.1063/1.1810479
 - 
			
                    [9]
                
			
(9) Castillo, J. F.; Aoiz, F. J.; Bañares, L.; Collins, M. A. J. Phys. Chem. A 2004, 108 (32), 6611. doi: 10.1021/jp048366b
 - 
			
                    [10]
                
			
(10) Moyano, G. E.; Collins, M. A. J. Chem. Phys. 2003, 119 (11), 5510. doi: 10.1063/1.1599339
 - 
			
                    [11]
                
			
(11) Fuller, R. O.; Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 2001, 114 (24), 10711. doi: 10.1063/1.1377602
 - 
			
                    [12]
                
			
(12) Song, K.; Collins, M. A. Chem. Phys. Lett. 2001, 335 (5), 481.
 - 
			
                    [13]
                
			
(13) Collins, M. A.; Zhang, D. H. J. Chem. Phys. 1999, 111 (22), 9924. doi: 10.1063/1.480344
 - 
			
                    [14]
                
			
(14) Bettens, R. P. A.; Hansen, T. A.; Collins, M. A. J. Chem. Phys. 1999, 111 (14), 6322. doi: 10.1063/1.479937
 - 
			
                    [15]
                
			
(15) Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1996, 104 (12), 4600. doi: 10.1063/1.471207
 - 
			
                    [16]
                
			
(16) Li, H.; Le, R. R. J. J. Chem. Phys. 2006, 125 (4), 044307. doi: 10.1063/1.2212933
 - 
			
                    [17]
                
			
(17) Li, A. Y.; Xie, D. Q. J. Chem. Phys. 2010, 133 (14), 144306. doi: 10.1063/1.3490642
 - 
			
                    [18]
                
			
(18) Wu, T.; Manthe, U. J. Chem. Phys. 2003, 119 (1), 14. doi: 10.1063/1.1577328
 - 
			
                    [19]
                
			
(19) Ishida, T.; Schatz, G. C. J. Chem. Phys. 1997, 107 (9), 3558. doi: 10.1063/1.474695
 - 
			
                    [20]
                
			
(20) Takata, T.; Taketsugu, T.; Hirao, K.; Gordon, M. S. J. Chem. Phys. 1998, 109 (11), 4281. doi: 10.1063/1.477032
 - 
			
                    [21]
                
			
(21) Crespos, C.; Collins, M. A. J. Chem. Phys. 2004, 120 (5), 2392. doi: 10.1063/1.1637337
 - 
			
                    [22]
                
			
(22) Wang, M.; Sun, X.; Bian, W.; Cai, Z. J. Chem. Phys. 2006, 124 (23), 234311. doi: 10.1063/1.2203610
 - 
			
                    [23]
                
			
(23) Dawes, R.; Thompson, D. L.; Guo, Y.; Wagner, A. F.; Minkoff, M. J. Chem. Phys. 2007, 126 (18), 184108. doi: 10.1063/1.2730798
 - 
			
                    [24]
                
			
(24) Corchado, J. C.; Bravo, J. L.; Espinosa-Garcia, J. J. Chem. Phys. 2009, 130 (18), 184314. doi: 10.1063/1.3132223
 - 
			
                    [25]
                
			
(25) Varandas, A. J. C.; Brown, F. B.; Mead, C. A. J. Chem. Phys. 1987, 86, 6258. doi: 10.1063/1.452463
 - 
			
                    [26]
                
			
(26) Bowman, J. M.; Czako, G.; Fu, B. Phys. Chem. Chem. Phys. 2011, 13 (18), 8094. doi: 10.1039/c0cp02722g
 - 
			
                    [27]
                
			
(27) Pukrittayakamee, A.; Malshe, M.; Hagan, M.; Raff, L. M.; Narulkar, R.; Bukkapatnum, S.; Komanduri, R. J. Chem. Phys. 2009, 130 (13), 134101. doi: 10.1063/1.3095491
 - 
			
                    [28]
                
			
(28) Le, H. M.; Raff, L. M. J. Phys. Chem. A 2010, 114 (1), 45. doi: 10.1021/jp907507z
 - 
			
                    [29]
                
			
(29) Sumpter, B. G.; Noid, D. W. Chem. Phys. Lett. 1992, 192 (5), 455.
 - 
			
                    [30]
                
			
(30) Blank, T. B.; Brown, S. D.; Calhoun, A. W.; Doren, D. J. J. Chem. Phys. 1995, 103 (10), 4129. doi: 10.1063/1.469597
 - 
			
                    [31]
                
			
(31) Connor, J. N. L. Comput. Phys. Commun. 1979, 17, 117. doi: 10.1016/0010-4655(79)90075-4
 - 
			
                    [32]
                
			
(32) Eyring, H.; Polanyi, M. Phys. Chem. Abt. B 1931, 12, 279.
 - 
			
                    [33]
                
			
(33) Sato, S. J. Chem. Phys. 1955, 23 (12), 2465.
 - 
			
                    [34]
                
			
(34) Aguado, A.; Paniagua, M. J. Chem. Phys. 1992, 96 (2), 1265. doi: 10.1063/1.462163
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Xiaolong Zhang , Mingshan Jin , Shaoli Liu , Bingfei Yan , Yun Li . Constructing High-Precision Potential Energy Surfaces Based on Physical Models: A Comprehensive Computational Chemistry Experiment. University Chemistry, 2025, 40(10): 257-262. doi: 10.12461/PKU.DXHX202411049
 - 
				[2]
				
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
 - 
				[3]
				
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
 - 
				[4]
				
Zongpei Zhang , Yanyang Li , Yanan Si , Kai Li , Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041
 - 
				[5]
				
Conghao Shi , Ranran Wang , Juli Jiang , Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034
 - 
				[6]
				
Jiaojiao Yu , Bo Sun , Na Li , Cong Wen , Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177
 - 
				[7]
				
Liangyu Gong , Jie Wang , Fengyu Du , Lubin Xu , Chuanli Ma , Shihai Yan , Zhuwei Song , Fuheng Liu , Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023
 - 
				[8]
				
Xiyuan Su , Zhenlin Hu , Ye Fan , Xianyuan Liu , Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059
 - 
				[9]
				
Xingyuan Lu , Yutao Yao , Junjing Gu , Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074
 - 
				[10]
				
Weijie Yang , Mansheng Chen , Chen Xu , Fujian Xu . Hydroxyl-Rich Polycations: Innovative Materials Empowering Life and Health. University Chemistry, 2025, 40(9): 332-343. doi: 10.12461/PKU.DXHX202410072
 - 
				[11]
				
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
 - 
				[12]
				
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
 - 
				[13]
				
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
 - 
				[14]
				
Mengyang LI , Hao XU , Zhonghao NIU , Chunhua GONG , Weihui ZHONG , Jingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080
 - 
				[15]
				
Qingying Gao , Tao Luo , Jianyuan Su , Chaofan Yu , Jiazhu Li , Bingfei Yan , Wenzuo Li , Zhen Zhang , Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074
 - 
				[16]
				
Qiang Wu , Wenhua Hou . Teaching Classical Contents Newly: Taking Temperature–Entropy Diagram as an Example. University Chemistry, 2025, 40(4): 399-407. doi: 10.12461/PKU.DXHX202407102
 - 
				[17]
				
Zhou Fang , Zhihao Zhang , Weihan Jiang , Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038
 - 
				[18]
				
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
 - 
				[19]
				
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
 - 
				[20]
				
Fanpeng Shang , Jiantuo Chen . 多视角分析DMPE盘状双层胶束——第38届中国化学奥林匹克(初赛)第4题解析. University Chemistry, 2025, 40(8): 388-393. doi: 10.12461/PKU.DXHX202410034
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(51)
 - Abstract views(593)
 - HTML views(28)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: