Citation: XU Chun-Long, WANG Jin-Guo, ZHANG Xiang-Yu. Strong Single-Band Down-Conversion Emission in Tm3+-Doped NaYF4 Microparticles[J]. Acta Physico-Chimica Sinica, ;2015, 31(11): 2183-2190. doi: 10.3866/PKU.WHXB201509142
-
We synthesized Tm3+-doped NaYF4 microcrystals with various length-to-diameter ratios by using a facile hydrothermal method assisted with sodium citrate from precursor solutions with various pH values. The β-NaYF4:Tm3+ samples were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared (FT-IR) spectroscopy, and photoluminescence spectroscopy. XRD and SEM show that as the pH of the precursor solutions increased, the morphology of the microcrystals changed from long rods to short microprisms to microplates. We also investigated the luminescence properties of the β-NaYF4:Tm3+ hexagonal microdisks and microrods. By selectively exciting the NaYF4:Tm3+ microcrystals with a 656-nm pulsed laser at a pulse duration of 10 ns, they exhibited a strong single-band down-conversion emission at 800 nm. We systematically studied how the excitation wavelength, temperature, and length-to-diameter ratio of the particles affected the luminescence intensity of their near-infrared (NIR) single-band emission. As the length-to-diameter ratio of the NaYF4:Tm3+ microcrystals increased, their luminescence intensity strengthened. Exploring the reason for this luminescence enhancement, we propose a mechanism based on vacancy defects.
-
-
[1]
(1) Chen, X. Y.; Liu, Y. S.; Tu, D. T. Lanthanide-doped Luminescent Nanomaterials: from Fundamentals to Bioapplications; Springer-Verlag Press: Heidelberg, 2014; pp 125-187.
-
[2]
(2) MacDougall, S. K. W.; Ivaturi, A.; Marques-Hueso, J.; Krä mer, K. W.; Richards, B. S. Sol. Energy Mater. Sol. Cells 2014, No. 128, 18. doi: 10.1016/j.solmat.2014.05.004
-
[3]
(3) Chen, G. Y.; Qiu, H. L.; Prasad, P. N.; Chen, X. Y. Chem. Rev. 2014, 114 (10), 5161. doi: 10.1021/cr400425h
-
[4]
(4) Zheng, W.; Tu, D. T.; Liu, Y. S.; Luo, W. Q.; Ma, E.; Zhu, H. M.; Chen, X. Y. Scientia Sinica Chimica 2014, 44 (2), 168. [郑伟, 涂大涛, 刘永升, 罗文钦, 马恩, 朱浩淼, 陈学元. 中国科学: 化学, 2014, 44 (2), 168.] doi: 10.1360/N032013-00041
-
[5]
(5) Wang, F.; Banerjee, D.; Liu, Y. S.; Chen, X. Y.; Liu, X. G. Analyst 2010, 135 (8), 1839. doi: 10.1039/C0AN00144A
-
[6]
(6) Ge, X. Y.; Yuan, Q. J. Wuhan Univ. (Nat. Sci. Ed.) 2015, 61, 10. [葛雪莹, 袁荃. 武汉大学学报: 理学版, 2015, 61, 10.]
-
[7]
(7) Hampl, J.; Hall, M.; Mufti, N. A.; Yao, Y. M.; MacQueen, D. B.; Wright, W. H.; Cooper, D. E. Anal. Biochem. 2001, 288 (2), 176. doi: 10.1006/abio.2000.4902
-
[8]
(8) Zou, W. Q.; Visser, C.; Maduro, J. A.; Pshenichnikov, M. S.; Hummelen, J. C. Nat. Photonics 2012, 6 (8), 560. doi: 10.1038/nphoton.2012.158
-
[9]
(9) Xie, X. J.; Liu, X. G. Nat. Mater. 2012, 11 (10), 842. doi: 10.1038/nmat3426
-
[10]
(10) Kumar, R. A.; Arivanandhan, M.; Hayakawa, Y. Progress in Crystal Growth and Characterization of Materials 2013, 59 (3), 113. doi: 10.1016/j.pcrysgrow.2013.07.001
-
[11]
(11) Karaveli, S.; Zia, R. Phys. Rev. Lett. 2011, 106 (19), 193004. doi: 10.1103/PhysRevLett.106.193004
-
[12]
(12) Wang, F.; Liu, X. Accounts Chem. Res. 2014, 47 (4), 1378. doi: 10.1021/ar5000067
-
[13]
(13) Lu, Q.; Hou, Y.; Tang, A.; Wu, H.; Teng, F. Appl. Phys. Lett. 2013, 102 (23), 233103. doi: 10.1063/1.4811175
-
[14]
(14) Gao, D.; Zhang, X.; Gao, W. J. Appl. Phys. 2012, 111 (3), 033505. doi: 10.1063/1.3681293
-
[15]
(15) Tian, D. P.; Gao, D. L.; Chong, B.; Liu, X. Z. Dalton Trans. 2015, 44 (9), 4133. doi: 10.1039/C4DT03735A
-
[16]
(16) Deng, T. L.; Yan, S. R.; Hu, J. G. Acta Phys. -Chim. Sin. 2014, 30 (4), 773. [邓陶丽, 闫世润, 胡建国. 物理化学学报, 2014, 30 (4), 773.] doi: 10.3866/PKU.WHXB201402201
-
[17]
(17) Zhang, X. Y.; Li, L.; Gao, D. L.; Zheng, H. R. Spectrosc. Spect. Anal. 2009, 29, 2738. [张翔宇, 李林, 高当丽, 郑海荣. 光谱学与光谱分析, 2009, 29, 2738.]
-
[18]
(18) Nasim, H.; Jamil, Y. Optics & Laser Technology 2014, 56, 211. doi: 10.1016/j.optlastec.2013.08.012
-
[19]
(19) Wu, J.; Yao, Z.; Zong, J.; Jiang, S. Opt. Lett. 2007, 32 (6), 638. doi: 10.1364/OL.32.000638
-
[20]
(20) Zheng, L. J.; Li, Y. X.; Liu, H. L.; Xu, W.; Zhang, Z. G. Acta Phys. Sin. 2013, 62 (24), 240701. [郑龙江, 李雅新, 刘海龙, 徐伟, 张治国. 物理学报, 2013, 62 (24), 240701.] doi: 10.7498/aps.62.240701
-
[21]
(21) Zhang, X. Y.; Gao, D. L.; Zheng, H. R. Chin. Phys. B 2008, 17 (11), 4328. doi: 10.1088/1674-1056/17/11/061
-
[22]
(22) Gao, D. L.; Tian, D. P.; Xiao, G. Q.; Chong, B.; Yu, G. H.; Pang, Q. Opt. Lett. 2015, 40 (15), 3580. doi: 10.1364/OL.40.003580
-
[23]
(23) Krä mer, K. W.; Biner, D.; Frei, G.; Gü del, H. U.; Hehlen, M. P.; Lü thi, S. R. Chem. Mater. 2004, 16 (7), 1244. doi: 10.1021/cm031124o
-
[24]
(24) Gao, D. L.; Gao, W.; Shi, P.; Li, L. RSC Adv. 2013, 3 (34), 14757. doi: 10.1039/C3RA40517F
-
[25]
(25) Gao, D. L.; Zhang, X. Y.; Zheng, H. R.; Shi, P.; Li, L.; Ling, Y. W. Dalton Trans. 2013, 42 (5), 1834. doi: 10.1039/C2DT31814H
-
[26]
(26) Yi, G.; Lu, H.; Zhao, S.; Ge, Y.; Yang, W.; Chen, D.; Guo, L. H. Nano Lett. 2004, 4 (11), 2191. doi: 10.1021/nl048680h
-
[27]
(27) Gao, D.; Zhang, X.; Gao, W. ACS Appl. Mater. Interfaces 2013, 5 (19), 9732. doi: 10.1021/am402843h
-
[28]
(28) Zhang, X. Y.; Gao, D. L.; Li, L. J. Appl. Phys. 2010, 107 (12), 123528. doi: 10.1063/1.3436569
-
[29]
(29) Gao, D. L.; Zhang, X. Y.; Zhang, Z. L.; Xu, L. M.; Lei, Y.; Zheng, H. R. Acta Phys. Sin. 2009, 58 (9), 6108. [ 高当丽, 张翔宇, 张正龙, 徐良敏, 雷瑜, 郑海荣. 物理学报, 2009, 58 (9), 6108.] doi: 10.7498/aps.58.6108
-
[30]
(30) Gao, D. L.; Zheng, H. R.; Tian, Y.; Cui, M.; Lei, Y.; He, E. J.; Zhang, X. S. J. Nanosci. Nanotech. 2010, 10 (11), 7694. doi: 10.1166/jnn.2010.2787
-
[31]
(31) Miyakawa, T.; Dexter, D. L. Phys. Rev. B 1970, 1 (7), 2961. doi: 10.1103/PhysRevB.1.2961
-
[32]
(32) Liu, G. K. Chem. Soc. Rev. 2015, 44 (6), 163. doi: 10.1039/c4cs00187g
-
[33]
(33) Zhang, S. Y. Spectroscopy of Rare Earth Ions: Spectral Property and Spectral Theory; Science Press: Beijing, 2008; pp 138-153. [张思远. 稀土离子的光谱学: 光谱性质和光谱理论. 北京: 科学出版社, 2008: 138-153.]
-
[34]
(34) Fu, J. X.; Fu, X. H.; Wang, C. M.; Yang, X. F.; Zhuang, J. L.; Zhang, G. G.; Lai, B. Y.; Wu, M. M.; Wang, J. Eur. J. Inorg. Chem. 2013, 2013 (8), 1269. doi: 10.1002/ejic.201201278
-
[35]
(35) Wu, Z.; Lin, M.; Liang, S.; Liu, Y.; Zhang, H.; Yang, B. Part. Part. Syst. Charact. 2013, 30 (4), 311. doi: 10.1002/ppsc.201200106
-
[1]
-
-
[1]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[2]
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
-
[3]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[4]
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
-
[5]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[6]
Xinyu Liu , Weiran Hu , Zhengkai Li , Wei Ji , Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021
-
[7]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[8]
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
-
[9]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[10]
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
-
[11]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[12]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[13]
Zishuo Yi , Peng Liu , Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079
-
[14]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[15]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[16]
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
-
[17]
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
-
[18]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[19]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[20]
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
-
[1]
Metrics
- PDF Downloads(72)
- Abstract views(316)
- HTML views(4)