Citation: YAO Li-Zhen, KONG De-Sheng, DU Jiu-Yao, WANG Ze, ZHANG Jing-Wei, WANG Na, LI Wen-Juan, FENG Yuan-Yuan. Enhancement of the Photoelectrochemical Activity of α-Fe2O3 Materials by Surface Modification with Vanadium[J]. Acta Physico-Chimica Sinica, ;2015, 31(10): 1895-1904. doi: 10.3866/PKU.WHXB201509074 shu

Enhancement of the Photoelectrochemical Activity of α-Fe2O3 Materials by Surface Modification with Vanadium

  • Received Date: 10 July 2015
    Available Online: 7 September 2015

    Fund Project: 山东省自然科学基金(ZR2010EM026) (ZR2010EM026)国家级大学生创新创业训练计划项目(201410446044)资助 (201410446044)

  • Surface modification of semiconductor materials is an effective way to improve their photocatalysis and photo-conversion activities. Bare and V-modified α-Fe2O3 photoelectrode materials were prepared using hydrothermal, chemical bath deposition and heat treatment approaches. Their physicochemical and photoelectrochemical (PEC) properties were then investigated with X-ray diffractometry (XRD), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), voltammetry, and electrochemical AC impedance spectroscopy (EIS) techniques. The existence of FeVO4 was indicated by its characteristic X-ray diffractometry patterns, while no significant red shifts in the photoabsorption edge were detected in UV-Vis diffuse reflectance spectroscopy spectra. With V-modified and bare Fe2O3 serving as a photoanode, photoelectrochemical measurements were carried out for water splitting in 1 molmol·L-1 NaOH (pH 13.6). The enhancement of α-Fe2O3 photoelectrochemical activities through V-modification was indicated by significantly increased photocurrents and decreased photocharge-recombination probability. By measuring electrochemical AC impedance spectroscopy spectra, pseudo-first-order rate constants for the charge transfer at the illuminated electrode/solution interface were estimated. The rate constant for V-modification of the Fe2O3 electrode was higher than that of the bare Fe2O3 electrode. Improved interfacial charge transfer kinetics through V-modification is responsible for the enhanced photoelectrochemical activities of α-Fe2O3. The interfacial photocharge transfer and recombination processes and their properties are discussed with a semiconductor energy band model constructed for the electrode system.

  • 加载中
    1. [1]

      (1) Yang, X.; Liu, R.; He, Y.; Thorne, J.; Zheng, Z.; Wang, D. Nano Res. 2015, 8, 56. doi: 10.1007/s12274-014-0645-2

    2. [2]

      (2) van de Krol, R.; Grätzel, M. Introduction, Principles of Photoelectrochemical Cells. In Photoelectrochemical Hydrogen Production; van de Krol, R., Grätzel, M. Eds.; Springer Science +Business Media: New York, 2012; pp 3-67.

    3. [3]

      (3) Valdés, A.; Brillet, J.; Grätzel, M.; Gudmundsdóttir, H.; Hansen, H. A.; Jónsson, H.; Klüpfel, P.; Kroes, G. J.; Le Formal, F.; Man, I. C.; Martins, R. S.; Nørskov, J. K.; Rossmeisl, J.; Sivula, K.; Vojvodic, A.; Zäch, M. Phys. Chem. Chem. Phys. 2012, 14, 49. doi: 10.1039/C1CP23212F

    4. [4]

      (4) Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Chem. Rev. 2010, 110, 6503. doi: 10.1021/cr1001645

    5. [5]

      (5) Zhou, W.; Xie Q.; Lian, S. Prog. Chem. 2013, 25, 1989. [周文理, 谢青季, 廉世勋. 化学进展, 2013, 25, 1989.]

    6. [6]

      (6) Diab, M.; Mokari, T. Inorg. Chem. 2014, 53. 2304.

    7. [7]

      (7) Rangaraju, R. R.; Raja, K. S.; Panday, A.; Misra, M. Electrochim. Acta 2010, 55, 785. doi: 10.1016/j.electacta.2009.07.012

    8. [8]

      (8) Pradhan, G. K.; Padhi, D. K.; Parida, K. M. ACS Appl. Mater. Interfaces 2013, 5, 9101. doi: 10.1021/am402487h

    9. [9]

      (9) Lee, C. Y.; Wang, L.; Kado, Y.; Kirchgeorg, R.; Schmuki, P. Electrochem. Commun. 2013, 34, 308. doi: 10.1016/j.elecom.2013.07.024

    10. [10]

      (10) Wang, L.; Lee, C.Y.; Schmuki, P. Electrochem. Commun. 2013, 30, 21. doi: 10.1016/j.elecom.2013.01.013

    11. [11]

      (11) Shangguan, P. P.; Tong, S. P.; Li, H. L.; Leng, W. H. Acta Phys. -Chim. Sin. 2013, 29, 1954. [上官鹏鹏, 童少平, 李海丽, 冷文华. 物理化学学报, 2013, 29, 1954.] doi: 10.3866/PKU.WHXB201306261

    12. [12]

      (12) Jin, H.; Wang, J.; Ji, Y.; Chen, M. M.; Zhang, Y.; Wang, C.; Cong, Y. Q. Acta Phys.-Chim. Sin. 2015, 31, 955. [金环, 王娟, 姬云, 陈媚媚, 张轶, 王齐, 丛燕青. 物理化学学报, 2015, 31, 955.] doi: 10.3866/PKU.WHXB201503112

    13. [13]

      (13) Kumar, P.; Sharma, P.; Shrivastav, R.; Dass, S.; Satsangi, V. R. Int. J. Hydrog. Energy 2011, 36, 2777. doi: 10.1016/j.ijhydene.2010.11.107

    14. [14]

      (14) Zhang, X.; Li, H.; Wang, S.; Fan, F. R. F.; Bard, A. J. J. Phys. Chem. C 2014, 118, 16842. doi: 10.1021/jp500395a

    15. [15]

      (15) Shaban, Y. A.; Khan, S. U. M. Sci. Adv. Mater. 2012, 4, 356. doi: 10.1166/sam.2012.1292

    16. [16]

      (16) Barroso, M.; Mesa, C. A.; Pendlebury, S. R.; Cowan, A. J.; Hisatomi, T.; Sivula, K.; Grätzel, M.; Klug, D. R.; Durrant, J. R. PNAS 2012, 109, 15640. doi:10.1073/pnas.1118326109

    17. [17]

      (17) Barroso, M.; Cowan, A. J.; Pendlebury, S. R.; Grätzel, M.; Klug, D. R.; Durrant, J. R. J. Am. Chem. Soc. 2011, 133, 14868. doi: 10.1021/ja205325v

    18. [18]

      (18) Klahr, B.; Gimenez, S.; Fabregat-Santia , F.; Bisquert, J.; Hamann, T. W. J. Am. Chem. Soc. 2012, 134, 16693. doi: 10.1021/ja306427f

    19. [19]

      (19) Shen, S.; Zhou, J.; Dong, C. L.; Hu, Y.; Tseng, E. N.; Guo, P.; Guo, L.; Mao, S. S. Sci. Rep. 2014, 4, 6627. doi: 10.1038/srep06627

    20. [20]

      (20) Peter, L. M.; Wijayantha, K. G. U.; Tahir, A. A. Faraday Discuss. 2012, 155, 309. doi: 10.1039/C1FD00079A

    21. [21]

      (21) Sun, W.; Meng, Q.; Jing, L.; Liu, D.; Cao, Y. J. Phys. Chem. C 2013, 117, 1358. doi: 10.1021/jp309599d

    22. [22]

      (22) Augustynski, J.; Alexander, B. D.; Solarska, R. Top. Curr. Chem. 2011, 303, 1. doi: 10.1007/978-3-642-22294-8

    23. [23]

      (23) Varshney, D.; Yogi, A. J. Mol. Struct. 2011, 995, 157. doi: 10.1016/j.molstruc.2011.04.011

    24. [24]

      (24) Martis, V.; Oldman, R.; Anderson, R.; Fowles, M.; Hyde, T.; Smith, R.; Nikitenko, S.; Bras, W.; Sankar, G. Phys. Chem. Chem. Phys. 2013, 15, 168. doi: 10.1039/C2CP43307A

    25. [25]

      (25) Sun, L.; Wu, W.; Yang, S.; Zhou, J.; Hong, M.; Xiao, X.; Ren, F.; Jiang, C. ACS Appl. Mater. Interfaces 2014, 6, 1113. doi: 10.1021/am404700h

    26. [26]

      (26) Zhou, W.; Li, T.; Wang, J.; Qu, Y.; Pan, K.; Xie, Y.; Tian, G.; Wang, L.; Ren, Z.; Jiang, B.; Fu, H. Nano Res. 2014, 7, 731. doi: 10.1007/s12274-014-0434-y

    27. [27]

      (27) Jana, S.; Mondal, A. ACS Appl. Mater. Interfaces 2014, 6, 15832. doi: 10.1021/am5030879

    28. [28]

      (28) Huang, Y. C.; Zhao, Z. F.; Li, S. X.; D, J.; Zheng, H. J. Chin. J. Inorg. Chem. 2015, 31, 133. [黄益操, 赵浙菲, 李世雄, 邸婧, 郑华均. 无机化学学报, 2015, 31, 133.]

    29. [29]

      (29) Xu, Z.; Huang, C.; Wang, L.; Pan, X.; Qin, L.; Guo, X.; Zhang, G. Ind. Eng. Chem. Res. 2015, 54, 4593. doi: 10.1021/acs.iecr.5b00335

    30. [30]

      (30) Mohapatra, S. K.; Banerjee, S.; Misra, M. Nanotechnology 2008, 19, 315601. doi: 10.1088/0957-4484/19/31/315601

    31. [31]

      (31) Oliveira, H. S.; Oliveira, L. C. A.; Pereira, M. C.; Ardisson, J. D.; Souza, P. P.; Patricio, P. O.; Moura, F. C. C. New J. Chem. 2015, 39, 3051. doi: 10.1039/C4NJ02063D

    32. [32]

      (32) Hwang, H. K.; Seo, J. W.; Seo, W. S.; Lim, Y. S.; Park, K. Int. J. Energy Res. 2014, 38, 241. doi: 10.1002/er.v38.2

    33. [33]

      (33) Wang, M.; Wang, L. A.; Zhou, L. N.; Zhang, W. J. J. Chin. Ceram. Soc. 2009, 37, 203. [王敏, 王里奥, 周丽娜, 张文杰. 硅酸盐学报, 2009, 37, 203.]

    34. [34]

      (34) Zhang, G. Q.; Zhang, X.; Lin, T.; ng, T.; Qi, M. Chin. Chem. Lett. 2012, 23, 145. doi: 10.1016/j.cclet.2011.10.015

    35. [35]

      (35) Zhang, G. Q.; Zhang, X.; Qi, M.; Lin, T.; ng, T. Chin. J. Catal. 2012, 33, 870. [张贵泉, 张昕, 祁敏, 林涛,龚婷. 催化学报, 2012, 33, 870.]

    36. [36]

      (36) Kong, D. S.; Wei, Y. J.; Li, X. X.; Zhang, Y.; Feng, Y. Y.; Li, W. J. J. Electrochem. Soc. 2014, 161, H144.

    37. [37]

      (37) Kong, D. S.; Zhang, X. D.; Wang, J.; Wang, C.; Zhao, X.; Feng, Y. Y.; Li, W. J. J. Solid State Electrochem. 2013, 17, 69. doi: 10.1007/s10008-012-1854-9

    38. [38]

      (38) Zhang, J. W.; Kong, D. S.; Zhang, H.; Du, D. D.; Wang, N.; Feng, Y. Y.; Li, W. J. J. Solid State Electrochem. 2015, accepted. doi: 10.1007/s10008-015-2948-y

    39. [39]

      (39) Kong, D. S. Langmuir 2010, 26, 4880. doi: 10.1021/la9036869

    40. [40]

      (40) Li, W. J.; Du, D. D.; Yan, T. J.; Kong, D. S.; You, J. M.; Li, D. Z. J. Colloid Interface Sci. 2015, 444, 42. doi: 10.1016/j.jcis.2014.12.052

    41. [41]

      (41) Du, D. D; Li, W. J.; Chen, S. S.; Yan, T. J.; You, J. M.; Kong, D. S. New J. Chem. 2015, 39, 3129.

    42. [42]

      (42) Li, W. J.; Kong, D. S.; Cui, X. L.; Du, D. D.; Yan, T. J.; You, J. M. Mater. Res. Bull. 2014, 51, 69. doi: 10.1016/j.materresbull.2013.12.007

    43. [43]

      (43) ZSimpWim Echem Software, Version 3.20d, 2004; Jade 5.0 (MDI) software package, 2004.

    44. [44]

      (44) Barron, V.; Torrent, J. J. Soil Sci. 1986, 37, 499. doi: 10.1111/ejs.1986.37.issue-4

    45. [45]

      (45) Li, W.; Li, D.; Chen, Z.; Huang, H.; Sun, M.; He, Y.; Fu, X. J. Phys. Chem. C 2008, 112, 14943. doi: 10.1021/jp8049075

    46. [46]

      (46) Boudjemaa, A.; Boumaza, S.; Trari, M.; Bouarab, R.; Bouguelia, A. Int. J. Hydrog. Energy 2009, 34, 4268. doi: 10.1016/j.ijhydene.2009.03.044

    47. [47]

      (47) de Tacconi, N. R.; Boyles, C. A.; Rajeshwar, K. Langmuir 2000, 16, 5665. doi: 10.1021/la000037x

    48. [48]

      (48) Radecka, M.; Wierzbicka, M.; Komornicki, S.; Rekas, M. Phys. B 2004, 348, 160. doi: 10.1016/j.physb.2003.11.086

    49. [49]

      (49) Bonanos, N.; Steele, B. C. H.; Butler, E. P.; MacDonald, J. R.; Johnson, W. B.; Worrell, W. L.; MacDonald, D. D.; McKubre, M. C. H.; Barsoukov, E.; Conway, B. E.; Wagner, N. Applications of Impedance Spectroscopy. In Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed.; Barsoukov, E., MacDonald, J. R. Eds.; John Wiley & Sons, Inc.: New Jersey, 2005; pp 205-537.

    50. [50]

      (50) Wijayantha, K. G. U.; Saremi-Yarahmadi, S.; Peter, L. M. Phys. Chem. Chem. Phys. 2011, 13, 5264. doi: 10.1039/c0cp02408b

    51. [51]

      (51) Klahr, B.; Gimenez, S.; Fabregat-Santia , F.; Hamann, T.; Bisquertm, J. J. Am. Chem. Soc. 2012, 134, 4294. doi: 10.1021/ja210755h

    52. [52]

      (52) Bertoluzzi, L.; Bisquert, J. J. Phys. Chem. Lett. 2012, 3, 2517. doi: 10.1021/jz3010909

    53. [53]

      (53) Rao, N. S.; Palanna, O. G. Bull. Mater. Sci. 1995, 18, 229. doi: 10.1007/BF02749660

    54. [54]

      (54) Li, A. T.; Cao, L. Y.; Huang, J. F.; Huang, Y. C.; Wu, J. P. J. Synth. Cryst. 2012, 41, 1227. [李阿婷, 曹丽云, 黄剑锋, 黄毅成, 吴建鹏. 人工晶体学报, 2012, 41, 1227.]

    55. [55]

      (55) Wang, M.; Luan, H. Y.; Yu, P.; Che, Y. S.; Niu, C.; Dong, D. Chin. J. Nonferrous Metals 2013, 23, 2243. [王敏, 栾海燕, 余萍, 车寅生, 牛超, 董多. 中国有色金属学报, 2013, 23, 2243.] doi: 10.1016/S1003-6326(13)62724-7

    56. [56]

      (56) Rao, Z.; Gu, Y.; Huang, C. Y.; He, Y.; Huang, Y. P.; Zhang, A. Q. Environ. Chem. 2013, 32, 564. [饶志, 顾彦, 黄春迎, 何燕, 黄应平, 张爱清. 环境化学, 2013, 32, 564.].

    57. [57]

      (57) Liu, Y.; Dai, C. H.; Ma, J. F.; Song, Z. W.; Sun, Y.; Fang, J. R.; Zgao, J. G.; Sun, X.; Gao, C.; Liu, Z. S. Bull. Chin. Ceram. Soc. 2008, 28, 1220. [刘晔, 戴长虹, 马峻峰, 宋祖伟, 孙勇, 房晶瑞, 赵金刚, 孙霞, 高敞, 刘振森. 硅酸盐通报, 2008, 28, 1220.]

    58. [58]

      (58) Liang, X.; Zhu, S.; Zhong, Y.; Zhu, J.; Yuan, P.; He, H.; Zhang, J. Appl. Catal. B 2010, 97, 151. doi: 10.1016/j.apcatb.2010.03.035

    59. [59]

      (59) Kaneti, Y. V.; Zhang, Z.; Yue. J.; Jiang, X.; Yu, A. J. Nanopart. Res. 2013, 15, 1948. doi: 10.1007/s11051-013-1948-z

    60. [60]

      (60) Kim, K.; Kim, I. H.; Yoon, K. Y.; Lee, J.; Jang, J. H. J. Mater. Chem. A 2015, 3, 7706. doi: 10.1039/C5TA00027K


  • 加载中
    1. [1]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    2. [2]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    4. [4]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    5. [5]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    6. [6]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    7. [7]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    12. [12]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    13. [13]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    14. [14]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    15. [15]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    16. [16]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    17. [17]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    18. [18]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    19. [19]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    20. [20]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

Metrics
  • PDF Downloads(184)
  • Abstract views(1576)
  • HTML views(164)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return