Citation: ZHAO Xiang-Hua, LI Xiao-Sheng, ZHOU Li, WU Na-Na, YANG Xing-Kun, YUAN Shun-Dong, DING Dong-Xue, XU Hui. A Novel Molecule Based on 2,2'-Dipyridylamine Functionalized 9,9-Diarylfluorene with Steric Hindance: Design, Synthesis and Electro-Optical Property Research[J]. Acta Physico-Chimica Sinica, ;2015, 31(10): 1971-1976. doi: 10.3866/PKU.WHXB201509011 shu

A Novel Molecule Based on 2,2'-Dipyridylamine Functionalized 9,9-Diarylfluorene with Steric Hindance: Design, Synthesis and Electro-Optical Property Research

  • Received Date: 1 June 2015
    Available Online: 1 September 2015

    Fund Project: 国家自然科学基金(61405170) (61405170) 河南省教育厅重点项目(14B150011) (14B150011)信阳师范学院大学生科研基金(2014-DXS-136, 2015-DXS-163)资助项目 (2014-DXS-136, 2015-DXS-163)

  • The bipolar molecule N-(4-(9-phenyl-fluoren-9-yl)phenyl)-2,2'-bipydylamine (PFPhDPy) with bulky steric hindrance was synthesized successfully by substituting 9-(4-anilino)-9-phenyl-fluorene with 2-bromopyridine via Ullmann reaction, which is expected to possess od thermal stability, stable morphology, high triplet energy (ET), and od bipolar characteristics because of the bulky steric hindrance, excellent bipolar transporting characteristics of fluorene, interrupted conjugation, andelectrondeficient pyridine group. Thermo gravimetric analysis (TGA) indicates a decomposition transition temperature of 336 ℃ with 5% weight loss. Differential scanning calorimetry (DSC) curve reveals no crystallization and melting phenomena by heating to 190 ℃, which indicates the high morphological stability of the compound. The separation of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), calculated by density functional theory (DFT), indicates that a bipolar molecule was obtained and high triplet energy (ET, 3.0 eV) was calculated from the phosphorescence spectrum. The UV-Vis spectrum is independent of solvent effects with three absorption peaks at about 276, 298, and 308 nm, respectively. The fluorescence emission spectra show blue shift as the solvents' polarity increasing with emission peaks from 390 to 363 nm in the solvents of dichloromethane, ethyl acetate, ethanol, and acetonitrile. In addition, the structure of the compound was characterized by matrix-assisted laser desorption ionization time of flight mass spectrometer (MALDI-TOF MS), hydrogen nuclear magnetic resonance (1H NMR), and carbon nuclear magnetic resonance (13C NMR) spectra, respectively.

  • 加载中
    1. [1]

      (1) Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51 (12), 913. doi: 10.1063/1.98799

    2. [2]

      (2) Hofbeck, T.; Monkowius, U.; Yersin, H. J. Am. Chem. Soc. 2015, 137 (1), 399. doi: 10.1021/ja5109672

    3. [3]

      (3) Zhang, S. L.; Yao, L.; Peng, Q. M.; Li, W. J.; Pan, Y. Y.; Xiao, R.; Gao, Y.; Gu, C.; Wang, Z. M.; Lu, P.; Li, F.; Su, S. J.; Yang, B.; Ma, Y. G. Adv. Funct. Mater. 2015,25 (11), 1755. doi: 10.1002/adfm.201404260

    4. [4]

      (4) Yoo, S. I.; Yoon, J. A.; Kim, N. H.; Kim, J. W.; Kang, J. S.; Moon, C. B.; Kim, W. Y. J. Lumin. 2015, 160, 346. doi: 10.1016/j.jlumin.2014.12.028

    5. [5]

      (5) Fan, Z. K.; Li, N. Q.; Quan, Y. W.; Chen, Q. M.; Ye, S. H.; Fan, Q. L.; Huang, W.; Xu, H. J. Mater. Chem. C 2014, 2, 9754. doi: 10.1039/C4TC01870B

    6. [6]

      (6) ng, S. L.; Sun, N.; Luo, J. J.; Zhong, C.; Ma, D. G.; Qin, J. G.; Yang, C. L. Adv. Funct. Mater. 2014, 24, 5710. doi: 10.1002/adfm.201400149

    7. [7]

      (7) Hudson, Z. M.; Wang, Z. B.; Helander, M. G.; Lu, Z. H.; Wang, S. N. Adv. Mater. 2012, 24, 2922. doi: 10.1002/adma.201200927

    8. [8]

      (8) Zhang, T.; Liang, Y. J.; Cheng, J. L.; Li, J. Y. J. Mater. Chem. C 2013, 1, 757. doi: 10.1039/C2TC00305H

    9. [9]

      (9) Tsai, M. H.; Hong, Y. H.; Chang, C. H.; Su, H. C.; Wu, C. C.; Matoliukstyte, A.; Simokaitiene, J.; Grigalevicius, S.; Grazulevicius, J. V.; Hsu, C. P. Adv. Mater. 2007, 19(6), 862.

    10. [10]

      (10) Gu, X.; Zhang, H. Y.; Fei, T.; Yang, B.; Xu, H.; Ma, Y. G.; Liu, X. D. J. Phys. Chem. A 2010, 114 (2), 965. doi: 10.1021/jp904610s

    11. [11]

      (11) Wu, M. F.; Yeh, S. J.; Chen, C. T.; Murayama, H.; Tsuboi, T.; Li, W. S.; Chao, I.; Liu, S. W.; Wang, J. K. Adv. Funct. Mater. 2007, 17 (12), 1887. doi:10.1002/adfm.200600800

    12. [12]

      (12) Cho, Y. J.; Lee, J. Y. Adv. Mater. 2011, 23 (39), 4568. doi: 10.1002/adma.201102045

    13. [13]

      (13) Thiery, S.; Tondelier, D.; Declairieux, C.; Seo, G.; Geffroy, B.; Jeannin, O.; Rault-Berthelot, J.; Métivier, R.; Poriel, C. J. Mater. Chem. C 2014, 2 (21), 4156. doi:10.1039/c4tc00171k

    14. [14]

      (14) Thiery, S.; Tondelier, D.; Declairieux, C.; Geffroy, B.; Jeannin, O.; Métivier, R.; Rault-Berthelot, J.; Poriel, C. J. Phys. Chem. C 2015, 119 (11), 5790. doi:10.1021/jp511385f

    15. [15]

      (15) Wang, X. D.; Wang, S. M.; Ma, Z. H.; Ding, J. Q.; Wang, L. X.; Jing, X. B.; Wang, F. S. Adv. Funct. Mater. 2014, 24, 3413.

    16. [16]

      (16) Ding, L.; Dong, S. C.; Jiang, Z. Q.; Chen, H.; Liao, L. S. Adv. Funct. Mater. 2015, 25, 645.

    17. [17]

      (17) Romain, M.; Tondelier, D.; Geffroy, B.; Shirinskaya, A.; Jeannin, O.; Rault-Berthelot, J.; Poriel, C. Chem. Commun. 2015, 51 (7), 1313. doi: 10.1039/C4CC08028A

    18. [18]

      (18) Hou, X. Y.; Li, T. C.; Yin, C. R.; Xu, H.; Lin, J.; Hua, Y. R.; Chen, D. Y.; Xie, L. H.; Huang, W. Synth. Met. 2009, 159 (11), 1055. doi: 10.1016/j.synthmet.2009.01.032

    19. [19]

      (19) Yu, D. H.; Zhao, F. C.; Han, C. M.; Xu, H.; Li, J.; Zhang, Z.; Deng, Z. P.; Ma, D. G.; Yan, P. F. Adv. Mater. 2012, 24 (4), 509. doi: 10.1002/adma.201104214

    20. [20]

      (20) Zhao, X. H.; Zhang, Z. S.; Qian, Y.; Yi, M. D.; Xie, L. H.; Hu, C. P.; Xie, G. H.; Xu, H.; Han, C. M.; Zhao, Y.; Huang, W. J. Mater. Chem. C 2013, 1 (21), 3482. doi: 10.1039/c3tc00875d

    21. [21]

      (21) Duan, L.; Qiao, J.; Sun, Y. D.; Qiu, Y. Adv. Mater. 2011, 23 (9), 1137. doi: 10.1002/adma.201003816

    22. [22]

      (22) Xie, L. H.; Hou, X. Y.; Hua, Y. R.; Tang, C.; Liu, F.; Fan, Q. L.; Huang, W. Org. Lett. 2006, 8 (17), 3701. doi: 10.1021/ol061268j

    23. [23]

      (23) Zhao, X. H.; Li, X. S.; Shi, N. N.; Yang, X. K.; Li, X. Y. Spectrosc. Spect. Anal. 2015, accepted. [赵祥华, 黎小胜, 史南南, 杨性坤, 李小雨. 光谱学与光谱分析, 2015, 已接收.]

    24. [24]

      (24) Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bässler, H.; Porsch, M.; Daub, J. Adv. Mater. 1995, 7 (6), 551. doi: 10.1002/adma.19950070608

    25. [25]

      (25) Ge, Z.; Hayakawa, T.; Ando, S.; Ueda, M.; Akiike, T.; Miyamoto, H.; Kajita, T.; Kakimoto, M. Adv. Funct. Mater. 2008, 18 (4), 584. doi: 10.1002/adfm.200700913


  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    5. [5]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    6. [6]

      Jinghan Xu Yang Wang Donghui Wei . Drawing Cross-Sectional Contour Maps of π Molecular Orbitals. University Chemistry, 2025, 40(3): 23-29. doi: 10.12461/PKU.DXHX202403023

    7. [7]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    8. [8]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    9. [9]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    10. [10]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    11. [11]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    12. [12]

      . . University Chemistry, 2024, 39(9): 0-0.

    13. [13]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    14. [14]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    15. [15]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    16. [16]

      Xinqiong LiGuocheng RaoXi PengChan YangYanjing ZhangYan TianXianghui FuJia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419

    17. [17]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    18. [18]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    19. [19]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    20. [20]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

Metrics
  • PDF Downloads(100)
  • Abstract views(1629)
  • HTML views(174)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return