Citation: HE Bing, LUO Yong, LI Bing-Ke, XUE Ying, YU Luo-Ting, QIU Xiao-Long, YANG Teng-Kuei. Predicting and Virtually Screening Breast Cancer Targeting Protein HEC1 Inhibitors by Molecular Descriptors and Machine Learning Methods[J]. Acta Physico-Chimica Sinica, ;2015, 31(9): 1795-1802. doi: 10.3866/PKU.WHXB201507301 shu

Predicting and Virtually Screening Breast Cancer Targeting Protein HEC1 Inhibitors by Molecular Descriptors and Machine Learning Methods

  • Received Date: 2 April 2015
    Available Online: 30 July 2015

    Fund Project: 抗肿瘤(乳腺癌)一类新药SKLB1312&rdquo (乳腺癌)

  • Highly expressed in cancer 1 (HEC1) is a conserved mitotic regulator that is critical for spindle checkpoint control, kinetochore functionality, and cell survival. Overexpression of HEC1 has been detected in a variety of human cancers, and it is linked to poor prognosis of primary breast cancers. Thus, it is important to screen novel inhibitors with high affinity for HEC1. Machine learning (ML) methods were exhibiting od pharmacodynamics, and toxicity. In this work, two ML methods, support vector machines (SVMs) and random forests (RFs), were used to develop a classification method for searching inhibitors and non-inhibitors of HEC1 from the chemical library of structural diversity by screening characteristics of molecular descriptors. Both ML methods achieved promising prediction accuracies, and the RF model showed better performance. We performed virtual screening of HEC1 inhibitors by the RF model from an in-house database to screen potential HEC1 inhibitors. Two novel potential candidates were found. In vitro experiments of the two compounds showed that both had a certain degree of antitumor activity for the MDA-MB-468 and MDA-MB-231 breast cancer cell lines. Our study shows that ML methods are promising to design and virtually screen inhibitors of HEC1.

  • 加载中
    1. [1]

      (1) Gan, S. J.; Wang, Q.; Zhu, L. M.; Xie, H.; Ding, X. F. Basic & Clin. Med. 2015, 35 (1), 134. [甘绍举, 王青, 朱丽敏, 谢浩, 丁先锋. 基础医学与临床, 2015, 35 (1), 134.]

    2. [2]

      (2) Chen, Y.; Riley, D. J.; Chen, P. L.; Lee, W. H. Mol. Cell Biol. 1997, 17 (10), 6049.

    3. [3]

      (3) Du, X. L.; Wang, M. R. Acta Acad. Med. Sin. 2007, 29 (1), 137. [杜小莉, 王明荣. 中国医学科学院学报, 2007, 29 (1), 137.]

    4. [4]

      (4) Hu, C. M.; Zhu, J.; Guo, X. E.; Chen, W.; Qiu, X. L.; N , B.; Chien, R.; Wang, Y. V.; Tsai, C. Y.; Wu, G.; Kim, Y.; Lopez, R.; Chamberlin, A. R.; Lee, E. H.; Lee, W. H. Oncogene 2015, 34, 1220. doi: 10.1038/onc.2014.67

    5. [5]

      (5) Huang, L. Y.; Chang, C. C.; Lee, Y. S.; Chang, J. M.; Huang, J. J.; Chuang, S. H.; Kao, K. J.; Lau, G. M.; Tsai, P. Y.; Liu, C. W.; Lin, H. S.; Lau, J. Y. Mol. Cancer Ther. 2014, 13 (6), 1419.

    6. [6]

      (6) Lee, Y. S.; Chuang, S. H.; Huang, L. Y.; Lai, C. L.; Lin, Y. H.; Yang, J. Y.; Liu, C. W.; Yang, S. C.; Lin, H. S.; Chang, C. C.; Lai, J. Y.; Jian, P. S.; Lam, K.; Chang, J. M.; Lau, J. Y.; Huang, J. J. J. Med. Chem. 2014, 57 (10), 4098. doi: 10.1021/jm401990s

    7. [7]

      (7) Wu, G.; Qiu, X. L.; Zhou, L.; Zhu, J.; Chamberlin, R.; Lau, J.; Chen, P. L.; Lee, W. H. Cancer Res. 2008, 68 (20), 8393. doi: 10.1158/0008-5472.CAN-08-1915

    8. [8]

      (8) Qiu, X. L.; Li, G.; Wu, G.; Zhu, J.; Zhou, L.; Chen, P. L.; Chamberlin, A. R.; Lee, W. H. J. Med. Chem. 2009, 52 (6), 1757. doi: 10.1021/jm8015969

    9. [9]

      (9) Chen, Y.; Riley, D. J.; Zheng, L.; Chen, P. L.; Lee, W. H. J. Biol. Chem. 2002, 277 (51), 49408. doi: 10.1074/jbc.M207069200

    10. [10]

      (10) Diaz-Rodríguez, E.; Sotillo, R.; Schvartzman, J. M.; Benezra, R. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (43), 16719. doi: 10.1073/pnas.0803504105

    11. [11]

      (11) Ferretti, C.; Totta, P.; Fiore, M.; Mattiuzzo, M.; Schillaci, T.; Ricordye, R.; Di Leonardo, A.; Degrassi, F. Cell Cycle 2010, 9 (20), 4174. doi: 10.4161/cc.9.20.13457

    12. [12]

      (12) Wei, R.; N , B.; Wu, G.; Lee, W. H. Mol. Biol. Cell 2011, 22 (19), 3584. doi: 10.1091/mbc.E11-01-0012

    13. [13]

      (13) Xue, Y.; Li, H.; Ung, C.; Yap, C.; Chen, Y. Chem. Res. Toxicol. 2006, 19, 1030. doi: 10.1021/tx0600550

    14. [14]

      (14) Xue, Y.; Yap, C. W.; Sun, L. Z.; Cao, Z. W.; Wang, J.; Chen, Y. Z. J. Chem. Inf. Comput. Sci. 2004, 44, 1497. doi: 10.1021/ci049971e

    15. [15]

      (15) Xue, Y.; Li, Z.; Yap, C. W.; Sun, L.; Chen, X.; Chen, Y. Z. J. Chem. Inf. Comput. Sci. 2004, 44, 1630. doi: 10.1021/ci049869h

    16. [16]

      (16) Yang, X. G.; Chen, D.; Wang, M.; Xue, Y.; Chen, Y. Z. J. Comput. Chem. 2009, 30, 1202. doi: 10.1002/jcc.v30:8

    17. [17]

      (17) Yang, X. G.; Lv, W.; Chen, Y. Z.; Xue, Y. J. Comput. Chem. 2010, 31, 1249.

    18. [18]

      (18) Lv, W.; Xue, Y. Eur. J. Med. Chem. 2010, 45, 1167. doi: 10.1016/j.ejmech.2009.12.038

    19. [19]

      (19) Cong, Y.; Yang, X.; Lv, W.; Xue, Y. J. Mol. Graph. Model. 2009, 28, 236. doi: 10.1016/j.jmgm.2009.08.001

    20. [20]

      (20) Luan, F.; Liu, H.; Ma, W.; Fan, B. Eur. Med. Chem. 2008, 43, 43. doi: 10.1016/j.ejmech.2007.03.002

    21. [21]

      (21) Ung, C. Y.; Li, H.; Yap, C. W.; Chen, Y. Z. Mol. Pharmacol. 2007, 71, 158.

    22. [22]

      (22) Li, H.; Ung, C.; Yap, C.; Xue, Y.; Li, Z.; Cao, Z.; Chen, Y. Chem. Res. Toxicol. 2005, 18, 1071. doi: 10.1021/tx049652h

    23. [23]

      (23) Li, B. K.; Cong, Y.; Tian, Z. Y.; Xue, Y. Acta Phys. -Chim. Sin. 2014, 30 (1), 171. [李秉轲, 丛湧, 田之悦, 薛英. 物理化学学报, 2014, 30 (1), 171.] doi: 10.3866/PKU.WHXB201311041

    24. [24]

      (24) Huang, J. J.; Lau, J. Improved Modulators of HEC1 Activity and Methods. CN Patent 103038231.A, 2013-04-10. [Huang, J. J., Lau, J. HEC1活性调节剂及其方法: 中国, CN103038231.A[P]. 2013-04-10.]

    25. [25]

      (25) Duda, R. O.; Hart, P. E. Pattern Classification and Scene Analysis; John Wiley & Sons: Hoboken, New Jersey, USA, 1973.

    26. [26]

      (26) ChemDraw 7.0.1 ed.; CambridgeSoft Corporation, Cambridge: Massachusetts, USA, 2007.

    27. [27]

      (27) Corina 3.4 edn.; Molecular Networks GmbH Computerchemie: Erlangen, Germany, 2006.

    28. [28]

      (28) Burges, C. J. Data Min. Knowl. Disc. 1998, 2, 121.

    29. [29]

      (29) Vapnik, V. N. The Nature of Statistical Learning Theory; Springer: Berlin & Heidelberg, Germany, 1995.

    30. [30]

      (30) Doucet, J. P.; Barbault, F.; Xia, H.; Panaye, A.; Fan, B. Curr. Comput-Aid. Drug. 2007, 3, 263. doi: 10.2174/157340907782799372

    31. [31]

      (31) Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.; Feuston, B. P. J. Chem. Inf. Comput. Sci. 2003, 43, 1947. doi: 10.1021/ci034160g

    32. [32]

      (32) Breiman, L. Mach. Learn. 2001, 45, 5. doi: 10.1023/A: 1010933404324

    33. [33]

      (33) Khandelwal, A.; Krasowski, M. D.; Reschly, E. J.; Sinz, M. W.; Swaan, P. W.; Ekins, S. Chem. Res. Toxicol. 2008, 21, 1457. doi: 10.1021/tx800102e

    34. [34]

      (34) Breiman, L. Out-of-bag Estimation, 1996, http://citeseerx.ist.psu.edu.sci-hub.org/viewdoc/download?doi=10.1.1.45.3712&rep=rep1&type=pdf (accessed Mar 15, 2015).

    35. [35]

      (35) Breiman, L. Wald Lecture II, Looking inside the Black Box, 2005. http://www.stat.berkeley.edu/users/breiman (accessed Mar 15, 2015).

    36. [36]

      (36) Breiman, L.; Cutler, A. Random Forests, Version 5.1, 2004. http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm (accessed Mar 15, 2015).


  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    5. [5]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    9. [9]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    12. [12]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    13. [13]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    14. [14]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

    15. [15]

      Hui Liu Shupeng Zhang Yuntian Zhang Wei Dong Yuji Liu Bingxin Deng Dongping Chen Yongxing Tang . Research on the Application of Virtual Reality (VR) Technology in the Teaching of Organic Chemistry. University Chemistry, 2024, 39(8): 64-71. doi: 10.3866/PKU.DXHX202312028

    16. [16]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    17. [17]

      Hui Xiong Yan Wang Rongxian Bai Yongqi Wu Chengmei Liu Yuefa Gong Jian Zhang . Development of a Compound Talent Training System Based on Virtual Technology: a Case Study of Chemical Unit and Process Simulation Practices. University Chemistry, 2024, 39(10): 314-317. doi: 10.12461/PKU.DXHX202405071

    18. [18]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    19. [19]

      Guangming Yang Yunhui Long . Design and Implementation of Analytical Chemistry Curriculum Based on the Learning Community of Teachers and Students. University Chemistry, 2024, 39(3): 132-137. doi: 10.3866/PKU.DXHX202309089

    20. [20]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

Metrics
  • PDF Downloads(203)
  • Abstract views(772)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return