Citation: HE Bing, LUO Yong, LI Bing-Ke, XUE Ying, YU Luo-Ting, QIU Xiao-Long, YANG Teng-Kuei. Predicting and Virtually Screening Breast Cancer Targeting Protein HEC1 Inhibitors by Molecular Descriptors and Machine Learning Methods[J]. Acta Physico-Chimica Sinica, ;2015, 31(9): 1795-1802. doi: 10.3866/PKU.WHXB201507301 shu

Predicting and Virtually Screening Breast Cancer Targeting Protein HEC1 Inhibitors by Molecular Descriptors and Machine Learning Methods

  • Received Date: 2 April 2015
    Available Online: 30 July 2015

    Fund Project: 抗肿瘤(乳腺癌)一类新药SKLB1312&rdquo (乳腺癌)

  • Highly expressed in cancer 1 (HEC1) is a conserved mitotic regulator that is critical for spindle checkpoint control, kinetochore functionality, and cell survival. Overexpression of HEC1 has been detected in a variety of human cancers, and it is linked to poor prognosis of primary breast cancers. Thus, it is important to screen novel inhibitors with high affinity for HEC1. Machine learning (ML) methods were exhibiting od pharmacodynamics, and toxicity. In this work, two ML methods, support vector machines (SVMs) and random forests (RFs), were used to develop a classification method for searching inhibitors and non-inhibitors of HEC1 from the chemical library of structural diversity by screening characteristics of molecular descriptors. Both ML methods achieved promising prediction accuracies, and the RF model showed better performance. We performed virtual screening of HEC1 inhibitors by the RF model from an in-house database to screen potential HEC1 inhibitors. Two novel potential candidates were found. In vitro experiments of the two compounds showed that both had a certain degree of antitumor activity for the MDA-MB-468 and MDA-MB-231 breast cancer cell lines. Our study shows that ML methods are promising to design and virtually screen inhibitors of HEC1.

  • 加载中
    1. [1]

      (1) Gan, S. J.; Wang, Q.; Zhu, L. M.; Xie, H.; Ding, X. F. Basic & Clin. Med. 2015, 35 (1), 134. [甘绍举, 王青, 朱丽敏, 谢浩, 丁先锋. 基础医学与临床, 2015, 35 (1), 134.]

    2. [2]

      (2) Chen, Y.; Riley, D. J.; Chen, P. L.; Lee, W. H. Mol. Cell Biol. 1997, 17 (10), 6049.

    3. [3]

      (3) Du, X. L.; Wang, M. R. Acta Acad. Med. Sin. 2007, 29 (1), 137. [杜小莉, 王明荣. 中国医学科学院学报, 2007, 29 (1), 137.]

    4. [4]

      (4) Hu, C. M.; Zhu, J.; Guo, X. E.; Chen, W.; Qiu, X. L.; N , B.; Chien, R.; Wang, Y. V.; Tsai, C. Y.; Wu, G.; Kim, Y.; Lopez, R.; Chamberlin, A. R.; Lee, E. H.; Lee, W. H. Oncogene 2015, 34, 1220. doi: 10.1038/onc.2014.67

    5. [5]

      (5) Huang, L. Y.; Chang, C. C.; Lee, Y. S.; Chang, J. M.; Huang, J. J.; Chuang, S. H.; Kao, K. J.; Lau, G. M.; Tsai, P. Y.; Liu, C. W.; Lin, H. S.; Lau, J. Y. Mol. Cancer Ther. 2014, 13 (6), 1419.

    6. [6]

      (6) Lee, Y. S.; Chuang, S. H.; Huang, L. Y.; Lai, C. L.; Lin, Y. H.; Yang, J. Y.; Liu, C. W.; Yang, S. C.; Lin, H. S.; Chang, C. C.; Lai, J. Y.; Jian, P. S.; Lam, K.; Chang, J. M.; Lau, J. Y.; Huang, J. J. J. Med. Chem. 2014, 57 (10), 4098. doi: 10.1021/jm401990s

    7. [7]

      (7) Wu, G.; Qiu, X. L.; Zhou, L.; Zhu, J.; Chamberlin, R.; Lau, J.; Chen, P. L.; Lee, W. H. Cancer Res. 2008, 68 (20), 8393. doi: 10.1158/0008-5472.CAN-08-1915

    8. [8]

      (8) Qiu, X. L.; Li, G.; Wu, G.; Zhu, J.; Zhou, L.; Chen, P. L.; Chamberlin, A. R.; Lee, W. H. J. Med. Chem. 2009, 52 (6), 1757. doi: 10.1021/jm8015969

    9. [9]

      (9) Chen, Y.; Riley, D. J.; Zheng, L.; Chen, P. L.; Lee, W. H. J. Biol. Chem. 2002, 277 (51), 49408. doi: 10.1074/jbc.M207069200

    10. [10]

      (10) Diaz-Rodríguez, E.; Sotillo, R.; Schvartzman, J. M.; Benezra, R. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (43), 16719. doi: 10.1073/pnas.0803504105

    11. [11]

      (11) Ferretti, C.; Totta, P.; Fiore, M.; Mattiuzzo, M.; Schillaci, T.; Ricordye, R.; Di Leonardo, A.; Degrassi, F. Cell Cycle 2010, 9 (20), 4174. doi: 10.4161/cc.9.20.13457

    12. [12]

      (12) Wei, R.; N , B.; Wu, G.; Lee, W. H. Mol. Biol. Cell 2011, 22 (19), 3584. doi: 10.1091/mbc.E11-01-0012

    13. [13]

      (13) Xue, Y.; Li, H.; Ung, C.; Yap, C.; Chen, Y. Chem. Res. Toxicol. 2006, 19, 1030. doi: 10.1021/tx0600550

    14. [14]

      (14) Xue, Y.; Yap, C. W.; Sun, L. Z.; Cao, Z. W.; Wang, J.; Chen, Y. Z. J. Chem. Inf. Comput. Sci. 2004, 44, 1497. doi: 10.1021/ci049971e

    15. [15]

      (15) Xue, Y.; Li, Z.; Yap, C. W.; Sun, L.; Chen, X.; Chen, Y. Z. J. Chem. Inf. Comput. Sci. 2004, 44, 1630. doi: 10.1021/ci049869h

    16. [16]

      (16) Yang, X. G.; Chen, D.; Wang, M.; Xue, Y.; Chen, Y. Z. J. Comput. Chem. 2009, 30, 1202. doi: 10.1002/jcc.v30:8

    17. [17]

      (17) Yang, X. G.; Lv, W.; Chen, Y. Z.; Xue, Y. J. Comput. Chem. 2010, 31, 1249.

    18. [18]

      (18) Lv, W.; Xue, Y. Eur. J. Med. Chem. 2010, 45, 1167. doi: 10.1016/j.ejmech.2009.12.038

    19. [19]

      (19) Cong, Y.; Yang, X.; Lv, W.; Xue, Y. J. Mol. Graph. Model. 2009, 28, 236. doi: 10.1016/j.jmgm.2009.08.001

    20. [20]

      (20) Luan, F.; Liu, H.; Ma, W.; Fan, B. Eur. Med. Chem. 2008, 43, 43. doi: 10.1016/j.ejmech.2007.03.002

    21. [21]

      (21) Ung, C. Y.; Li, H.; Yap, C. W.; Chen, Y. Z. Mol. Pharmacol. 2007, 71, 158.

    22. [22]

      (22) Li, H.; Ung, C.; Yap, C.; Xue, Y.; Li, Z.; Cao, Z.; Chen, Y. Chem. Res. Toxicol. 2005, 18, 1071. doi: 10.1021/tx049652h

    23. [23]

      (23) Li, B. K.; Cong, Y.; Tian, Z. Y.; Xue, Y. Acta Phys. -Chim. Sin. 2014, 30 (1), 171. [李秉轲, 丛湧, 田之悦, 薛英. 物理化学学报, 2014, 30 (1), 171.] doi: 10.3866/PKU.WHXB201311041

    24. [24]

      (24) Huang, J. J.; Lau, J. Improved Modulators of HEC1 Activity and Methods. CN Patent 103038231.A, 2013-04-10. [Huang, J. J., Lau, J. HEC1活性调节剂及其方法: 中国, CN103038231.A[P]. 2013-04-10.]

    25. [25]

      (25) Duda, R. O.; Hart, P. E. Pattern Classification and Scene Analysis; John Wiley & Sons: Hoboken, New Jersey, USA, 1973.

    26. [26]

      (26) ChemDraw 7.0.1 ed.; CambridgeSoft Corporation, Cambridge: Massachusetts, USA, 2007.

    27. [27]

      (27) Corina 3.4 edn.; Molecular Networks GmbH Computerchemie: Erlangen, Germany, 2006.

    28. [28]

      (28) Burges, C. J. Data Min. Knowl. Disc. 1998, 2, 121.

    29. [29]

      (29) Vapnik, V. N. The Nature of Statistical Learning Theory; Springer: Berlin & Heidelberg, Germany, 1995.

    30. [30]

      (30) Doucet, J. P.; Barbault, F.; Xia, H.; Panaye, A.; Fan, B. Curr. Comput-Aid. Drug. 2007, 3, 263. doi: 10.2174/157340907782799372

    31. [31]

      (31) Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.; Feuston, B. P. J. Chem. Inf. Comput. Sci. 2003, 43, 1947. doi: 10.1021/ci034160g

    32. [32]

      (32) Breiman, L. Mach. Learn. 2001, 45, 5. doi: 10.1023/A: 1010933404324

    33. [33]

      (33) Khandelwal, A.; Krasowski, M. D.; Reschly, E. J.; Sinz, M. W.; Swaan, P. W.; Ekins, S. Chem. Res. Toxicol. 2008, 21, 1457. doi: 10.1021/tx800102e

    34. [34]

      (34) Breiman, L. Out-of-bag Estimation, 1996, http://citeseerx.ist.psu.edu.sci-hub.org/viewdoc/download?doi=10.1.1.45.3712&rep=rep1&type=pdf (accessed Mar 15, 2015).

    35. [35]

      (35) Breiman, L. Wald Lecture II, Looking inside the Black Box, 2005. http://www.stat.berkeley.edu/users/breiman (accessed Mar 15, 2015).

    36. [36]

      (36) Breiman, L.; Cutler, A. Random Forests, Version 5.1, 2004. http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm (accessed Mar 15, 2015).


  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    6. [6]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    7. [7]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    8. [8]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    9. [9]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    10. [10]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    16. [16]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    17. [17]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    18. [18]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    19. [19]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(203)
  • Abstract views(829)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return