Citation: WANG Jing-Dong, LI Shuang, Lü Rong, YU An-Chi. Fluorescence Quenching of Eosin Y by Tyrosine[J]. Acta Physico-Chimica Sinica, ;2015, 31(9): 1787-1794. doi: 10.3866/PKU.WHXB201507241
-
Quenching of a fluorescent probe by amino acid residues can provide valuable information about the structural and conformational dynamics of a biopolymer. Herein, we systematically investigated the ultrafast fluorescence quenching dynamics of Eosin Y in the presence of N-acetyl-tyrosine (AcTyr) in H2O and D2O solutions using both femtosecond transient absorption and time-correlated single-photon counting experiments. We found that the quenching of the fluorescence of Eosin Y by AcTyr in aqueous solution is mainly because of the formation of a ground-state complex between Eosin Y and AcTyr. We also found that the lifetime of the ground-state complex formed between Eosin Y and AcTyr showed a clear kinetic isotope effect, indicating that the quenching of the fluorescence of Eosin Y by AcTyr in aqueous solution is via a proton-coupled electron transfer process.
-
-
[1]
(1) Michalet, X.; Weiss, S.; Jager, M. Chem. Rev. 2006, 106, 1785. doi: 10.1021/cr0404343
-
[2]
(2) Royer, C. A. Chem. Rev. 2006, 106, 1769. doi: 10.1021/cr0404390
-
[3]
(3) Edman, L.; Mets, U.; Rigler, R. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 6710. doi: 10.1073/pnas.93.13.6710
-
[4]
(4) Neuweiler, H.; Banachewicz, W.; Fersht, A. R. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 22106. doi: 10.1073/pnas.1011666107
-
[5]
(5) Neuweiler, H.; Doose, S.; Sauer, M. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 16650. doi: 10.1073/pnas.0507351102
-
[6]
(6) Rogers, J. M. G.; Poishchuk, A. L.; Guo, L.; Wang, J.; DeGrado, W. F.; Gai, F. Langmuir 2011, 27, 3815. doi: 10.1021/la200480d
-
[7]
(7) Chen, H.; Rhoades, E.; Butler, J. S.; Loh, S. N.; Webb, W. W. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 10459. doi: 10.1073/pnas.0704073104
-
[8]
(8) Doose, S.; Neuweiler, H.; Barsch, H.; Sauer, M. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 17400. doi: 10.1073/pnas.0705605104
-
[9]
(9) Yang, H.; Luo, G. B.; Karnchanaphanurach, P.; Louie, T. M.; Rech, I.; Cova, S.; Xun, L. Y.; Xie, X. S. Science 2003, 302, 262. doi: 10.1126/science.1086911
-
[10]
(10) Hudgins, R. R.; Huang, F.; Gramlich, G.; Nau, W. M. J. Am. Chem. Soc. 2002, 124, 556. doi: 10.1021/ja010493n
-
[11]
(11) Marme, N.; Knemeyer, J. P.; Wolfrum, J.; Sauer, M. Angew. Chem. Int. Edit. 2004, 43, 3798.
-
[12]
(12) ldberg, J. M.; Batjargal, S.; Chen, B. S.; Petersson, E. J. J. Am. Chem. Soc. 2013, 135, 18651. doi: 10.1021/ja409709x
-
[13]
(13) Doose, S.; Neuweiler, H.; Sauer, M. ChemPhysChem 2009, 10, 1389. doi: 10.1002/cphc.v10:9/10
-
[14]
(14) Chen, H.; Ahsan, S. S.; Santia -Berrios, M. E. B.; Abruna, H. D.; Webb, W. W. J. Am. Chem. Soc. 2010, 132, 7244. doi: 10.1021/ja100500k
-
[15]
(15) tz, M.; Hess, S.; Beste, G.; Skerra, A.; Michel-Beyerle, M. E. Biochemistry 2002, 41, 4156. doi: 10.1021/bi015888y
-
[16]
(16) Buschmann, V.; Weston, K. D.; Sauer, M. Bioconjugate Chem. 2003, 14, 195. doi: 10.1021/bc025600x
-
[17]
(17) Marme, N.; Knemeyer, J. P.; Sauer, M.; Wolfrum, J. Bioconjugate Chem. 2003, 14, 1133. doi: 10.1021/bc0341324
-
[18]
(18) Doose, S.; Neuweiler, H.; Sauer, M. ChemPhysChem 2005, 6, 2277.
-
[19]
(19) Luo, G. B.; Andricioaei, I.; Xie, X. S.; Karplus, M. J. Phys. Chem. B 2006, 110, 9363. doi: 10.1021/jp057497p
-
[20]
(20) Mataga, N.; Chosrowjan, H.; Shibata, Y.; Tanaka, F. J. Phys. Chem. B 1998, 102, 7081.
-
[21]
(21) Mataga, N.; Chosrowjan, H.; Shibata, Y.; Tanaka, F.; Nishina, Y.; Shiga, K. J. Phys. Chem. B 2000, 104, 10667. doi: 10.1021/jp002145y
-
[22]
(22) Mataga, N.; Chosrowjan, H.; Taniguchi, S.; Tanaka, F.; Kido, N.; Kitamura, M. J. Phys. Chem. B 2002, 106, 8917.
-
[23]
(23) Sun, Q. F.; Lu, R.; Yu, A. C. J. Phys. Chem. B 2012, 116, 660. doi: 10.1021/jp2100304
-
[24]
(24) Vaiana, A. C.; Neuweiler, H.; Schulz, A.; Wolfrum, J.; Sauer, M.; Smith, J. C. J. Am. Chem. Soc. 2003, 125, 14564. doi: 10.1021/ja036082j
-
[25]
(25) Zhong, D. P.; Zewail, A. H. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 11867. doi: 10.1073/pnas.211440398
-
[26]
(26) Zhu, R. X.; Li, X.; Zhao, X. S.; Yu, A. C. J. Phys. Chem. B 2011, 115, 5001. doi: 10.1021/jp200876d
-
[27]
(27) Visser, A.; van den Berg, P. A. W.; Visser, N. V.; van Hoek, A.; van den Burg, H. A.; Parsonage, D.; Claiborne, A. J. Phys. Chem. B 1998, 102, 10431. doi: 10.1021/jp982141h
-
[28]
(28) Laan, W.; Gauden, M.; Yeremenko, S.; van Grondelle, R.; Kennis, J. T. M.; Hellingwerf, K. J. Biochemistry 2006, 45, 51. doi: 10.1021/bi051367p
-
[29]
(29) Sjodin, M.; Ghanem, R.; Polivka, T.; Pan, J.; Styring, S.; Sun, L. C.; Sundstrom, V.; Hammarstrom, L. Phys. Chem. Chem. Phys. 2004, 6, 4851. doi: 10.1039/b407383e
-
[30]
(30) Mathes, T.; Zhu, J. Y.; van Stokkum, I. H. M.; Groot, M. L.; Hegemann, P.; Kennis, J. T. M. J. Phys. Chem. Lett. 2012, 3, 203. doi: 10.1021/jz201579y
-
[31]
(31) Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265. doi: 10.1016/0304-4173(85)90014-X
-
[32]
(32) Weinberg, D. R.; Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.; Kent, C. A.; Westlake, B. C.; Paul, A.; Ess, D. H.; McCafferty, D. G.; Meyer, T. J. Chem. Rev. 2012, 112, 4016. doi: 10.1021/cr200177j
-
[33]
(33) Hammes-Schiffer, S.; Stuchebrukhov, A. A. Chem. Rev. 2010, 110, 6939. doi: 10.1021/cr1001436
-
[34]
(34) Zhang, Y.; Yuan, S. W.; Lu, R.; Yu, A. C. J. Phys. Chem. B 2013, 117, 7308.
-
[35]
(35) Arbeloa, E. M.; Porcal, G. V.; Bertolotti, S. G.; Previtali, C. M. J. Photochem. Photobiol. A: Chem. 2013, 252, 31. doi: 10.1016/j.jphotochem.2012.11.003
-
[36]
(36) Yuan, S. W.; Lu, R.; Yu, A. C. Acta Phys. -Chim. Sin. 2014, 30, 987. [袁树威, 吕荣, 于安池. 物理化学学报, 2014, 30, 987.] doi: 10.3866/PKU.WHXB201403112
-
[37]
(37) Zhong, R. B.; Lu, R.; Yu, A. C. Sci. China Chem. 2013, 56, 230. doi: 10.1007/s11426-012-4788-2
-
[38]
(38) Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Plenum Press, New York, 1999.
-
[39]
(39) Fita, P.; Fedoseeva, M.; Vauthey, E. J. Phys. Chem. A 2011, 115, 2465.
-
[40]
(40) Fiebig, T.; Wan, C. Z.; Zewail, A. H. ChemPhysChem 2002, 3, 781. doi: 10.1002/1439-7641(20020916)3:9<781::AID-CPHC781>3.0.CO;2-U
-
[41]
(41) Rachofsky, E. L.; Osman, R.; Ross, J. B. A. Biochemistry 2001, 40, 946. doi: 10.1021/bi001664o
-
[42]
(42) Hazra, A.; Soudackov, A. V.; Hammes-Schiffer, S. J. Phys. Chem. Lett. 2011, 2, 36. doi: 10.1021/jz101532g
-
[43]
(43) Hammes-Schiffer, S. Energy Environ. Sci. 2012, 5, 7696. doi: 10.1039/c2ee03361e
-
[44]
(44) Mayer, J. M. J. Phys. Chem. Lett. 2011, 2, 1481. doi: 10.1021/jz200021y
-
[45]
(45) Schrauben, J. N.; Cattaneo, M.; Day, T. C.; Tenderholt, A. L.; Mayer, J. M. J. Am. Chem. Soc. 2012, 134, 16635. doi: 10.1021/ja305668h
-
[46]
(46) Weller, A. Z. Phys. Chem. 1982, 133, 93. doi: 10.1524/zpch.1982.133.1.093
-
[47]
(47) Zhang, J. B.; Sun, L. N.; Ichinose, K.; Funabiki, K.; Yoshida, T. Phys. Chem. Chem. Phys. 2010, 12, 10494. doi: 10.1039/c002831b
-
[48]
(48) Irebo, T.; Zhang, M. T.; Markle, T. F.; Scott, A. M.; Hammarstrom, L. J. Am. Chem. Soc. 2012, 13, 16247.
-
[49]
(49) Seidel, C. A. M.; Schulz, A.; Sauer, M. H. M. J. Phys. Chem. 1996, 100, 5541. doi: 10.1021/jp951507c
-
[50]
(50) Krichevsky, O.; Bonnet, G. Report Prog. Phys. 2002, 65, 251. doi: 10.1088/0034-4885/65/2/203
-
[1]
-
-
[1]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[2]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[3]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[4]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[5]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
-
[6]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[7]
Feiyang Liu , Liuhong Song , Miaoyu Fu , Zhi Zheng , Gang Xie , Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037
-
[8]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[9]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[10]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[11]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[12]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[13]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[14]
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
-
[15]
Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043
-
[16]
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
-
[17]
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
-
[18]
Meiyu Lin , Yuxin Fang , Songzhang Shen , Yaqian Duan , Wenyi Liang , Chi Zhang , Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042
-
[19]
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
-
[20]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[1]
Metrics
- PDF Downloads(219)
- Abstract views(802)
- HTML views(62)