Citation: XIA Xiang-Lai, LI Lin-Yan, GUO Fang, SU Wei, LIU Yan, CHEN Xiao-Mou, PAN She-Qi. Simulation of the Immobilization of Pu in the Gd2Zr2O7 Matrix by Investigating the Thermophysical Properties of (Gd1-xCex)2Zr2O7+x[J]. Acta Physico-Chimica Sinica, ;2015, 31(9): 1810-1814. doi: 10.3866/PKU.WHXB201507203
-
Polycrystalline samples of (Gd1-xCex)2Zr2O7+x (0 ≤ x ≤ 0.7) were synthesized by solid-state reaction using NaF as a flux at 1000 ℃ to simulate Pu-immobilization in the Gd2Zr2O7 matrix. Phase transformation and variation of the thermal expansion coefficients (TECs) and thermal conductivities (TCs) of the samples with temperature and composition were investigated. Powder X-ray diffraction (XRD) patterns show that pure Gd2Zr2O7 has a weakly ordered pyrochlore structure, whereas Ce-containing samples (i.e., the Pu-simulated solidified samples) exhibit a defect fluorite structure even if x is as low as 0.1. When x reaches 0.7, the XRD peaks of these samples widen. In the Ce 3d X-ray photoelectron spectrum (XPS) of (Gd1-xCex)2Zr2O7+x there are six peaks located at binding energies of 881.7, 888.1, 897.8, 900.4, 907.1, and 916.1 eV, which are almost the same as the peaks of CeO2. The Ce 3d XPS reveals that the Ce species in (Gd1-xCex)2Zr2O7+x are tetravalent. The TECs of (Gd1-xCex)2Zr2O7+x (0 ≤ x ≤ 0.7) generally increase with increasing temperature. At the same temperature, the TECs and TCs exhibit the same variation trend with the composition of the simulated solidified forms: they decrease from x = 0 to 0.1 and then linearly increase from x = 0.1 to 0.7.
-
-
[1]
(1) Stefanovsky, S. V.; Yudintsev, S. V.; Livshits, T. S. IOP Conf. Series: Mater. Sci. Eng. 2010, 9, 012001-1. doi: 10.1088/1757-899X/9/1/012001
-
[2]
(2) Yudintsev, S. V.; Stefanovsky, S. V.; Ewing, R. C. Actinide Host Phases as Radioactive Waste Forms. In Structural Chemistry of Inorganic Actinide Compounds; Krivovichev, S. V., Burns, P. C., Tananaev, I. G. Eds.; Elsevier: Amsterdam, 2007; pp 457-490.
-
[3]
(3) Donald, I. W.; Metcalfe, B. L.; Taylor, R. N. J. J. Mater. Sci. 1997, 32, 5851. doi: 10.1023/A:1018646507438
-
[4]
(4) Lutze, W.; Ewing, R. C. Radioactive Waste Forms for the Future; Lutze, W., Ewing, R. C. Eds.; Elsevier: Amsterdam, 1988; pp 1-159.
-
[5]
(5) Kumar, B.; Lin, S. J. Am. Ceram. Soc. 1991, 74, 226. doi: 10.1111/jace.1991.74.issue-1
-
[6]
(6) Stefanovsky, S. V.; Ivanov, I. A.; Gulin, A. N. Scientific Basis for Nuclear Waste Management XVIII; Murakami, T., Ewing, R. C. Eds.; Materials Research Society: Pittsburgh, PA, 1995; pp 101-106.
-
[7]
(7) Sickafus, K. E.; Minervini, L.; Grimes, R. W.; Valdez, J. A.; Ishimaru, M.; Li, F.; McClellan, K. J.; Hartmann, T. Science 2000, 289, 748. doi: 10.1126/science.289.5480.748
-
[8]
(8) Weber, W. J.; Ewing, R. C. Science 2000, 289, 2051. doi: 10.1126/science.289.5487.2051
-
[9]
(9) Lu, X. R.; Dong, F. Q.; Hu, S.; Wang, X. L.; Wu, Y. L. Acta Phys. Sin. 2012, 61, 152401-1. [卢喜瑞, 董发勤, 胡淞, 王晓丽, 吴彦霖. 物理学报, 2012, 61, 152401-1.]
-
[10]
(10) Zhang, F. X.; Wang, J. W.; Lian, J.; Lang, M. K.; Becker, U.; Ewing, R. C. Phys. Rev. Lett. 2008, 100, 045503-1. doi: 10.1103/PhysRevLett.100.045503
-
[11]
(11) Mandal, B. P.; Pandey, M.; Tyagi, A. K. J. Nucl. Mater. 2010, 406, 238. doi: 10.1016/j.jnucmat.2010.08.042
-
[12]
(12) Kutty, K. V. G.; Asuvathraman, R.; Madhavan, R. R.; Jena, H. J. Phys. Chem. Solids 2005, 66, 596. doi: 10.1016/j.jpcs.2004.06.066
-
[13]
(13) Weber, W. J.; Wald, J. W.; Matzke, H. J. Nucl. Mater. 1986, 138, 196. doi: 10.1016/0022-3115(86)90006-1
-
[14]
(14) Kerdaniel, E. D. F.; Clavier, N.; Dacheux, N.; Terra, O.; Podor, R. J. Nucl. Mater. 2007, 362, 451. doi: 10.1016/j.jnucmat.2007.01.132
-
[15]
(15) Metcalfe, B. L.; Donald, I. W.; Fong, S. K.; Gerrard, L. A.; Strachan, D. M.; Scheele, R. D. J. Nucl. Mater. 2009, 385, 485. doi: 10.1016/j.jnucmat.2008.12.035
-
[16]
(16) Ringwood, A. E.; Kesson, S. E.; Ware, N. G.; Hibberson, W.; Major, A. Nature 1979, 278, 219. doi: 10.1038/278219a0
-
[17]
(17) Patwe, S. J.; Ambekar, B. R.; Tyagi, A. K. J. Alloy. Compd. 2005, 389, 243. doi: 10.1016/j.jallcom.2004.06.094
-
[18]
(18) Tang, J. Y.; Chen, X. M.; Pan, S. Q.; Mu, T.; He, D. W. At. Energy Sci. Technol. 2010, 44, 394. [唐敬友, 陈晓谋, 潘社奇, 牟涛, 贺端威. 原子能科学技术, 2010, 44, 394.]
-
[19]
(19) Lu, X. R.; Ding, Y.; Dan, H.; Yuan, S. B.; Mao, X. L.; Fan, L.; Wu, Y. L. Ceram. Int. 2014, 40, 13191. doi: 10.1016/j.ceramint.2014.05.024
-
[20]
(20) Mandal, B. P.; Garg, N.; Sharma, S. M.; Tyagi, A. K. J. Nucl. Mater. 2009, 392, 95. doi: 10.1016/j.jnucmat.2009.03.050
-
[21]
(21) Reid, D. P.; Stennettn, M. C.; Hyatt, N. C. J. Solid State Chem. 2012, 191, 2. doi: 10.1016/j.jssc.2011.12.039
-
[22]
(22) Dickson, C. L.; Glasser, F. P. Cem. Concr. Res. 2000, 30, 1619. doi: 10.1016/S0008-8846(00)00362-8
-
[23]
(23) Lu, X. R.; Fan, L.; Shu, X. Y.; Su, S. J.; Ding, Y.; Yi, F. C. Ceram. Int. 2015, 41, 6344. doi: 10.1016/j.ceramint.2015.01.068
-
[24]
(24) Zhao, P. Z.; Li, L.Y.; Xu, S. M.; Zhang, Q. Acta Phys. -Chim. Sin. 2013, 29, 1168. [赵培柱, 李林艳, 徐盛明, 张覃. 物理化学学报, 2013, 29, 1168.] doi: 10.3866/PKU.WHXB201304013
-
[25]
(25) Zhao, L. Z. Acta Phys. Sin. 1989, 38, 987. [赵良仲. 物理学报, 989, 38, 987.]
-
[26]
(26) Zhang, H. S.; Chen, X. G.; Li, G.; Wang, X. L.; Dang, X. D. J. Eur. Ceram. Soc. 2012, 32, 3693. doi: 10.1016/j.jeurceramsoc.2012.06.003
-
[1]
-
-
[1]
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
-
[2]
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
-
[3]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[4]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[5]
Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003
-
[6]
Weina Wang , Fengyi Liu , Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029
-
[7]
Ji Qi , Jianan Zhu , Yanxu Zhang , Jiahao Yang , Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050
-
[8]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[9]
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
-
[10]
Hongwei Ma , Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035
-
[11]
Yanxin Wang , Hongjuan Wang , Yuren Shi , Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005
-
[12]
Guoxian Zhu , Jing Chen , Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027
-
[13]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[14]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[15]
Zhiguang Xu , Xuan Xu , Qiong Luo , Ganquan Wang , Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112
-
[16]
Jin Jia , Shangda Jiang . Is the z Axis Special in Atomic Structure?. University Chemistry, 2024, 39(6): 400-404. doi: 10.12461/PKU.DXHX202403091
-
[17]
Wen Shi , Zhangwen Wei , Mei Pan , Chengyong Su . Explorations on the Course Construction of Structural Chemistry Practice and Application Targeting the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 96-100. doi: 10.12461/PKU.DXHX202409036
-
[18]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[19]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[20]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[1]
Metrics
- PDF Downloads(216)
- Abstract views(732)
- HTML views(43)