Citation: WU Xiao-Ying, YANG Li-Kun, YAN Hui, YANG Fang-Zu, TIAN Zhong-Qun, ZHOU Shao-Min. Electrochemical Nucleation of Au on n-Type Semiconductor Silicon Electrode Surface[J]. Acta Physico-Chimica Sinica, ;2015, 31(9): 1708-1714. doi: 10.3866/PKU.WHXB201507101 shu

Electrochemical Nucleation of Au on n-Type Semiconductor Silicon Electrode Surface

  • Received Date: 3 April 2015
    Available Online: 10 July 2015

    Fund Project: 国家重大科学仪器设备开发专项(2011YQ03012406) (2011YQ03012406) 国家自然科学基金界面电化学创新群体(21321062) (21321062)国家自然科学基金(21373172)资助项目 (21373172)

  • Cyclic voltammetry and chronoamperometry have been used to investigate the mechanism of ld electrodeposition on the n-Si(111) electrode surface from a citrate bath, which had successfully applied to directly electroplate a dense ld film on the silicon surface. The results show that Au electrodeposition on the n-type silicon surface is an irreversible process, and the nucleation overpotential reaches 250 mV. According to Cottrell equation, the diffusion coefficient (D) is calculated to be (1.81 ± 0.14) × 10-4 cm2·s-1. The Scharifker-Hills (SH) model was used to analyze the experimental data. Agreement between the fitting curves and the theoretical curves confirms that the nucleation process of Au electrodeposition on the n-type silicon surface follows the progressive nucleation mechanism with three-dimensional growth under diffusion control. To further confirm the progressive nucleation mechanism, scanning electron microscopy (SEM) was used to observe the nucleation and growth of Au deposits at the initial stage of electrodeposition. The SEM results show that the morphology and density of the Au deposits are affected by the electrochemical deposition potential and time.

  • 加载中
    1. [1]

      (1) Buttard, D.; Oelher, F.; David, T. Nanoscale Res. Lett. 2011, 6, 580. doi: 10.1186/1556-276X-6-580

    2. [2]

      (2) Munford, M. L.; Maroun, F.; Cortes, R.; Allongue, P.; Pasa, A. A. Surface Science 2003, 537 (1-3), 95.

    3. [3]

      (3) Gamero, M.; Alonso, C. Journal of Applied Electrochemistry 2010, 40 (1), 175. doi: 10.1007/s10800-009-9993-0

    4. [4]

      (4) Groner, M.; Elam, J. W.; Fabreguette, F. H.; George, S. M. Thin Solid Films 2002, 413 (1-2), 186. doi: 10.1016/S0040-6090(02)00438-8

    5. [5]

      (5) Hiraki, A. J. Appl. Phys. 1972, 43, 3643. doi: 10.1063/1.1661782

    6. [6]

      (6) Ogata, Y. H.; Kobayashi, K.; Motoyama, M. Current Opinion in Solid State and Materials Science 2006, 10 (3-4), 163. doi: 10.1016/j.cossms.2007.02.001

    7. [7]

      (7) Li, A. C.; Zhang, G. Q. Functional Materials 1999, 30 (1), 82. [李爱昌, 张国庆. 功能材料, 1999, 30 (1), 82.]

    8. [8]

      (8) Khelladi, M. R.; Mentar, L.; Azizi, A.; Sahari, A.; Kahoul, A. Mater. Chem. Phys. 2009, 115 (1), 385. doi: 10.1016/j.matchemphys.2008.12.017

    9. [9]

      (9) Djenizian, T.; Santinacci, L.; Schmuki, P. Journal of the Electrochemical Society 2001, 148 (3), C197.

    10. [10]

      (10) Fukami, K.; Chourou, M. L.; Miyagawa, R.; Muñoz Noval, Á.; Sakka, T.; Manso-Silván, M.; Martín-Palma, R. J.; Ogata, Y. H. Materials 2011, 4 (4), 791.

    11. [11]

      (11) De Henau, K.; Huygens, I.; Strubbe, K. Journal of Solid State Electrochemistry 2010, 14 (1), 83. doi: 10.1007/s10008-009-0789-2

    12. [12]

      (12) Matsumoto, T.; Kobayashi, K.; Fukami, K.; Sakka, T.; Ogata, Y. H. Physica Status Solidi C 2009, 6 (7), 1561.

    13. [13]

      (13) Warren, S.; Prod'homme, P.; Maroun, F.; Allongue, P.; Cortes, R.; Ferrero, C.; Lee, T. L.; Cowie, B. C. C.; Walker, C. J.; Ferrer, S. Surface Science 2009, 603 (9), 1212. doi: 10.1016/j.susc.2009.03.004

    14. [14]

      (14) Guo, Y.; Zhang, G. Q.; Yao, S. W.; Guo, H. T.; ng, Z. L. Acta Phys. -Chim. Sin. 1996, 12, 436. [郭永, 张国庆, 姚素薇, 郭鹤桐, 龚正烈. 物理化学学报, 1996, 12, 436.] doi: 10.3866/PKU.WHXB19960510

    15. [15]

      (15) Fujita, T.; Nakamichi, S.; Ioku, S.; Maenaka, K.; Takayama, Y. Sensors and Actuators A-Physical 2007, 135 (1), 50. doi: 10.1016/j.sna.2006.10.058

    16. [16]

      (16) Yang, F. Z.; Yang, L. K.; Wu, D. Y.; Ren, B.; Tian, Z. Q. A Method for Pulse Plating of Dense ld Nanometer Film on AFM Silicon Tip. CN Patent 103757675. A, 2014-01-20. [杨防祖, 杨丽坤, 吴德印, 任斌, 田中群. 一种AFM硅针尖脉冲电镀纳米厚度致密金薄膜方法: 中国, CN103757675.A[P]. 2014-01-20.]

    17. [17]

      (17) Huang, X. Q.; Chen, Y.; Zhou, J Q.; Zhang, Z.; Zhang, J. Q. Journal of Electroanalytical Chemistry 2013, 709, 83. doi: 10.1016/j.jelechem.2013.09.012

    18. [18]

      (18) Zhao, Y.; Deng, F. X.; Hu, L. F.; Liu, Y. Q.; Pan, G. B. Electrochimica Acta 2014, 130, 537. doi: 10.1016/j.electacta.2014.03.051

    19. [19]

      (19) Tang, Y.; Zhao, D. X.; Shen, D. Z.; Zhang, J. Y.; Li, B. H.; Lu, Y. M.; Fan, X. W. Thin Solid Films 2008, 516 (8), 2094. doi: 10.1016/j.tsf.2007.11.095

    20. [20]

      (20) Tang, J.; Tian, X. C.; Zhou, F. Q.; Liu, Y. Q.; Lin, J. H. Acta Phys. -Chim. Sin. 2011, 27, 641. [汤儆, 田晓春, 周福庆, 刘跃强, 林建航. 物理化学学报, 2011, 27, 641.] doi: 10.3866/PKU.WHXB20110322

    21. [21]

      (21) Oskam, G.; Long, J.; Natarajan, A.; Searson, P. Journal of Physics D: Applied Physics 1998, 31 (16), 1927. doi: 10.1088/0022-3727/31/16/001

    22. [22]

      (22) Oskam, G.; Searson, P. C. Surface Sciences 2000, 446 (1-2), 103. doi: 10.1016/S0039-6028(99)01113-9

    23. [23]

      (23) Hamelin, A. Journal of Electroanalytical Chemistry 1996, 407 (1-2), 1. doi: 10.1016/0022-0728(95)04499-X

    24. [24]

      (24) Wang, S. H.; Guo, X. W.; Yang, H. Y.; Dai, J. C.; Zhu, R. Y.; ng, J.; Peng, L. M.; Ding, W. J. Applied Surface Science 2014, 288, 530. doi: 10.1016/j.apsusc.2013.10.065

    25. [25]

      (25) Im, B.; Kim, S. Electrochimica Acta 2014, 130, 52. doi: 10.1016/j.electacta.2014.02.154

    26. [26]

      (26) Shi, J. P.; Yang, F. Z.; Tian, Z. Q.; Zhou, S. M. Acta Phys. -Chim. Sin. 2013, 29, 2579. [史纪鹏, 杨防祖, 田中群, 周绍民. 物理化学学报, 2013, 29, 2579.] doi: 10.3866/PKU.WHXB201310092

    27. [27]

      (27) Scharifker, B.; Hills, G. Electrochimca Acta 1983, 28 (7), 879. doi: 10.1016/0013-4686(83)85163-9

    28. [28]

      (28) Gamero M.; Alonso, C. Journal of Applied Electrochemistry 2010, 40 (1), 175.

    29. [29]

      (29) Chen, J. R.; Qiu, L.; An, K. J. Acta Chimica Sinica 1988, 46 (4), 360. [陈景仁, 邱陵, 安可珍. 化学学报, 1988, 46 (4), 360.]


  • 加载中
    1. [1]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    2. [2]

      Chang LIUChao ZHANGTongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305

    3. [3]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    4. [4]

      Le ZhangHui-Yu XieXin LiLi-Ying SunYing-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465

    5. [5]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    6. [6]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    7. [7]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    8. [8]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    9. [9]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    10. [10]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    11. [11]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    12. [12]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    13. [13]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    14. [14]

      Yongsheng XuLisha YaoJian LiYanzhao DongDongyang XieMiaomiao ZhangFeng LiYunsheng DaiJinli ZhangHaiyang Zhang . Dual-ligand engineering over Au-based catalyst for efficient acetylene hydrochlorination. Chinese Chemical Letters, 2025, 36(3): 110318-. doi: 10.1016/j.cclet.2024.110318

    15. [15]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    18. [18]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    19. [19]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    20. [20]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

Metrics
  • PDF Downloads(221)
  • Abstract views(514)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return