Citation: HAYIERBIEK Kulisong, ZHAO Shu-Xian, YANG Yang, ZENG Han. Performance of Nitrogen-Doped Carbon Nanocomposite with Entrapped Enzyme-Based Fuel Cell[J]. Acta Physico-Chimica Sinica, ;2015, 31(9): 1715-1726. doi: 10.3866/PKU.WHXB201506231
-
A nanocomposite composed of N-doped mesoporous carbon material (NDMPC) and carboxymethylated chitosan (CMCH) was fabricated by mechanical co-mixing and used as an enzyme matrix. A novel glucose/O2 enzymatic biofuel cell was fabricated with a Nafion ion-exchange membrane consisting of a laccase (Lac)-entrapped biocathode and glucose oxidase-incorporated bioanode. Enzyme electrodes were prepared by the dripping coat and air-dried method. The performance of the laccase-based electrode as a biocathode in a fuel cell and an oxygen electro-chemical sensor was characterized by cyclic voltammetry in combination with the rotating disk electrode technique, linear scanning voltammetry (LSV), and chronoamperometry. UV-Vis spectrometry and graphite furnace atomic absorption spectroscopy were used to investigate the configuration of enzyme molecules on the surface of electrode and to evaluate the enzyme loading of the matrix on the electrode interface. The results from the experiments showed that the laccasebased cathode displayed direct electron transfer between the active centre in laccase (T1) and the conductive matrix without any external electron mediators (apparent electron transfer rate 0.013 s-1). A minor overpotential for oxygen reduction (150 mV) was also observed. Through further comparison of the intra-molecule electron relay rate (1000 s-1), substrate turnover frequency (0.023 s-1), and previous enzyme-conductive matrix electron transfer rate, quantitative analysis showed that the latter was the rate-determining step in the whole catalytic cycle of the oxygen reduction reaction. This laccase-based electrode as an oxygen electrochemical sensor for detecting oxygen showed a low detection limit (0.04 μmol·dm-3), high sensitivity (12.1 μA·μmol-1·dm3), and affinity for oxygen (KM = 8.2 μmol·dm-3). This laccase-based cathode also had advantages such as excellent reproducibility, long-term usability, thermal stability, and pH endurance. The results for the fabricated biofuel cell showed an open circuit voltage of 0.38 V and a maximal energy output density of 19.2 μW·cm-2, maintaining greater than 60% of the initial value even after continuous work for 3 weeks under optimal conditions.
-
-
[1]
(1) Armstrong, F. A.; Hirst, J. Pro Natl. Acad. Sci. U. S. A. 2011, 108, 14049. doi: 10.1073/pnas.1103697108
-
[2]
(2) Hussein, L.; Rubenwolf, S.; Von Stetten V.; Urban, G.; Zengerle, R.; Krueger, M.; Kerzenmacher, S. Biosens. Bioelectron. 2011, 26, 4133. doi: 10.1016/j.bios.2011.04.008
-
[3]
(3) Martinez-Ortiz, J.; Flores, R.; Vazquez-Duhalt, R. Biosens. Bioelectron. 2011, 26, 2626. doi: 10.1016/j.bios.2010.11.022
-
[4]
(4) Qiao, Y.; Li, C. M. J. Mater. Chem. 2011, 21, 4027. doi: 10.1039/C0JM02871A
-
[5]
(5) Zayats, M.; Katz, E.; Baron, R.; Willner, I. A. J. Am. Chem. Soc. 2005, 127, 12400. doi: 10.1021/ja052841h
-
[6]
(6) Liu, Y.; Qu, X. H.; Guo, H. W.; Chen, H. J.; Liu, B. F.; Dong, S. J. Biosens. Bioelectron. 2006, 21, 2195. doi: 10.1016/j.bios.2005.11.014
-
[7]
(7) Klis, M.; Karbarz, M.; Stojek, Z.; Rogalski, J.; Bilewicz, R. J. Phys. Chem. C. 2009, 113, 6062. doi: 10.1021/jp8094159
-
[8]
(8) Jensen, U. B.; Lorcher, S.; Vagin, M.; Chevallier, J.; Shipovskov, S.; Koroleva, O.; Besenbacher, F.; Ferapontova, E. Electrochim. Acta 2012, 62, 218. doi: 10.1016/j.electacta.2011.12.026
-
[9]
(9) Osman, M. H.; Shah, A. A.; Walsh, F. C. Biosens. Bioelectron. 2011, 26, 3087. doi: 10.1016/j.bios.2011.01.004
-
[10]
(10) Ramasamy, R. P.; Luckarift, H. R.; Ivnitski, D. M.; Atanassov, P. B.; Johnson, G. R. Chem. Commun. 2010, 46, 6045. doi: 10.1039/c0cc00911c
-
[11]
(11) Mao, F.; Mano, N.; Heller, A. J. Am. Chem. Soc. 2003, 125, 4951. doi: 10.1021/ja029510e
-
[12]
(12) Barriere, F.; Ferry, Y.; Rochefort, D.; Leech, D. Electrochem. Commun. 2004, 6, 237. doi: 10.1016/j.elecom.2003.12.006
-
[13]
(13) Xian, Y. Z.; Xian, Y.; Zhou, L. H.; Wu, F. H.; Ling, Y.; Jin, L, T. Electrochem. Commun. 2007, 9, 142. doi: 10.1016/j.elecom. 2006.08.049
-
[14]
(14) Wei, W.; Li, P. P.; Li, Y.; Cao, X. D.; Liu, S. Q. Electrochem. Commun. 2012, 22, 181. doi: 10.1016/j.elecom.2012.06.021
-
[15]
(15) Trohalaki, S.; Pachter, R.; Luckarift, H. R.; Johnson, G. R. Fuel Cells 2012, 12, 656. doi: 10.1002/fuce.v12.4
-
[16]
(16) Miyake, T.; Yoshino, S.; Yamada, T.; Hata, K.; Nishizawa, M. J. Am. Chem. Soc. 2011, 133, 5129. doi: 10.1021/ja111517e
-
[17]
(17) Zeng, H.; Liao, L. W.; Li, M. F.; Tao, Q.; Kang, J.; Chen, Y. X. Acta Phys. -Chim. Sin. 2010, 26, 3217. [曾涵, 廖铃文, 李明芳, 陶骞, 康婧, 陈艳霞. 物理化学学报, 2010, 26, 3217.] doi: 10.3866/PKU.WHXB20101208
-
[18]
(18) Zhu, Y. F.; Kaskel, S.; Shi, J. L.; Wage, T.; Pee, K. H. V. Chem. Mater. 2007, 19, 6408. doi: 10.1021/cm071265g
-
[19]
(19) Pang, H. L.; Liu, J.; Hu, D.; Zhang, X. H.; Chen, J. H. Electrochim. Acta 2010, 55, 6611. doi: 10.1016/j.electacta. 2010.06.013
-
[20]
(20) Kulisong, H.; Zeng, H. Chin. J. Appl. Chem. 2013, 30, 1194. [库里松•哈衣尔别克, 曾涵. 应用化学, 2013, 30, 1194.]
-
[21]
(21) Vinu, A. Adv. Funct. Mater. 2008, 18, 816.
-
[22]
(22) Qiu, H. J.; Xu, C. X.; Huang, X. R.; Ding, Y.; Qu, Y. B.; Gao, P. J. J. Phys. Chem. C. 2008, 112, 14781. doi: 10.1021/jp805600k
-
[23]
(23) Zhao, H. Y.; Zhou, H. M.; Zhang, J. X.; Zheng, W.; Zheng, Y. F. Biosens. Bioelectron. 2009, 25, 463. doi: 10.1016/j.bios. 2009.08.005
-
[24]
(24) Santucci, R.; Ferri, T.; Morpur , L.; Savini, I.; Avigliano, L. Biochem. J. 1998, 332, 611.
-
[25]
(25) Zheng, H.; Hu, J. B.; Li, Q. L. Acta Chim. Sin. 2006, 64, 806. [郑华, 胡劲波, 李启隆. 化学学报, 2006, 64, 806.]
-
[26]
(26) Freguia, S.; Virdis, B.; Harnisch, F.; Keller, J. Electrochim. Acta 2012, 82, 165. doi: 10.1016/j.electacta.2012.03.014
-
[27]
(27) Cracknell, J. A.; Vincent, K. A.; Armstrong, F. A. Chem. Rev. 2008, 108, 2439. doi: 10.1021/cr0680639
-
[28]
(28) Stolarczyk, K.; Lyp, D.; Zelechowska, K.; Biernat, J. F.; Rogalski, J.; Bilewicz, R. Electrochim. Acta 2012, 79, 74. doi: 10.1016/j.electacta.2012.06.050
-
[29]
(29) Wang, X. J.; Latonen, R. M.; Sjoberg-Eerola, P.; Eriksson, J. E.; Bobacka, J.; Boer, H.; Bergelin, M. J. Phys. Chem. C 2011, 111, 5919.
-
[30]
(30) Zhang, L. L.; Bai, L.; Xu, M.; Han, L.; Dong, S. J. Nano Ener. 2015, 11, 48. doi: 10.1016/j.nanoen.2014.10.020
-
[31]
(31) Tsujimura, S.; Kamitaka, Y.; Kano, K. Fuel Cells 2007, 7, 463.
-
[32]
(32) Soukharev, V.; Mano, N.; Heller, A. J. Am. Chem. Soc. 2004, 126, 8368. doi: 10.1021/ja0475510
-
[33]
(33) Mano, N.; Kim, H. H.; Zhang, Y. C.; Heller, A. J. Am. Chem. Soc. 2002, 124, 6480. doi: 10.1021/ja025874v
-
[34]
(34) Jiang, D. S.; Long, S. Y.; Huang, J.; Xiao, H. Y.; Zhou, J. Y. Bio. Eng. J. 2005, 25, 15. doi: 10.1016/j.bej.2005.03.007
-
[35]
(35) Masson, J. F.; Kranz, C.; Mizaikoff, B. Anal. Chem. 2007, 79, 8531. doi: 10.1021/ac071090u
-
[36]
(36) Liu, Y.; Wang, M. K.; Zhao, F.; Xu, Z. A.; Dong, S. J. Biosens. Bioelectron. 2005, 21, 984. doi: 10.1016/j.bios.2005.03.003
-
[37]
(37) Ikeda, T. Electrochim. Acta 2012, 82, 158. doi: 10.1016/j.electacta.2012.01.114
-
[38]
(38) Zheng, W.; Zhao, H. Y.; Zhang, J. X.; Zhou, H. M.; Xu, X. X.; Zheng, Y. F.; Wang, Y. B.; Cheng, Y.; Jang, B. Z. Electrochem. Commun. 2010, 12, 869. doi: 10.1016/j.elecom.2010.04.006
-
[39]
(39) Katz, E.; Willner, I.; Kotlyar, A. B. J. Electroanal. Chem. 1999, 479, 64. doi: 10.1016/S0022-0728(99)00425-8
-
[40]
(40) Li, X.; Zhang, L.; Su, L.; Ohsaka, T.; Mao, L. Fuel Cells 2019, 9, 85. doi: 10.1002/fuce.v9:1
-
[41]
(41) Ammam, M.; Fransaer, J. Biotechnol. Bioeng. 2012, 109, 1601. doi: 10.1002/bit.v109.7
-
[1]
-
-
[1]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[2]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[3]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[4]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[5]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[6]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[7]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[8]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[9]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[10]
Yingxian Wang , Tianye Su , Limiao Shen , Jinping Gao , Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015
-
[11]
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
-
[12]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[13]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[14]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[15]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[16]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[17]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[18]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[19]
Dong-Bing Cheng , Junxin Duan , Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053
-
[20]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[1]
Metrics
- PDF Downloads(269)
- Abstract views(833)
- HTML views(32)