Citation: JIN Zhen-Yu, LI Tong, LU An-Hui. Nitrogen-Enriched Hierarchical Porous Carbon for Carbon Dioxide Adsorption and Separation[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1602-1608. doi: 10.3866/PKU.WHXB201506181 shu

Nitrogen-Enriched Hierarchical Porous Carbon for Carbon Dioxide Adsorption and Separation

  • Received Date: 8 May 2015
    Available Online: 18 June 2015

    Fund Project: 国家自然科学基金(21473021) (21473021)高等学校博士点专项基金(20120041110019)资助项目 (20120041110019)

  • Hierarchical nitrogen-enriched porous carbon containing micropores, mesopores, and macropores were prepared by a nanocasting pathway using a Schiff base precursor and SBA-15 as the hard template. The specific surface area and pore volume of the obtained porous carbon are 752 m2·g-1 and 0.79 cm3·g-1, respectively. The nitrogen content is as high as 7.85% (w). The porous carbon shows a CO2 capacity of 97 cm3·g-1 at ambient pressure and 273 K. The CO2/N2 and CO2/CH4 separation ratios (molar ratios) are accordingly 7.0 and 3.2, and the Henry's low pressure selectivities are 23.3 and 4.2, respectively. CO2 adsorption tests confirmed that the micropores play a dominant role and nitrogen-containing functional groups play a synergistic role. The predicted ideal adsorbed solution theory (IAST) selectivities of the two-component mixed stream are 40 (CO2/N2) and 18 (CO2/CH4) by Toth mode simulation.

  • 加载中
    1. [1]

      (1) limate Change 2007: The Physical Science Basis; Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K. B.; Miller, H. L. Ed; Cambridge Press: New York, 2007.

    2. [2]

      (2) Hansen, J.; Sato, M.; Kharecha, P.; Beerling, D.; Berner, R.; Masson-Delmotte, V.; Mark, P.; Maureen, R.; Dana, L. R.; Zachos, J. C. Open Atmos. Sci. 2008, 2, 217. doi: 10.2174/1874282300802010217

    3. [3]

      (3) Song, C. Catal. Today 2006, 115, 2. doi: 10.1016/j.cattod. 2006.02.029

    4. [4]

      (4) Zhang, Y. T.; Fan, L. H.; Zhang, L.; Chen, H. L. Chem. Eng. (China) 2009, 37, 75. [张亚涛, 范立海, 张林, 陈欢林. 化学工程, 2009, 37, 75.]

    5. [5]

      (5) Phan, A.; Doonan, C. J.; Uribe-romo, F. J.; Knobler, C. B.; O' keeffe, M.; Yaghi, O. M. Accounts Chem. Res. 2010, 43, 58. doi: 10.1021/ar900116g

    6. [6]

      (6) Hao, G. P.; Jin, Z. Y.; Sun, Q.; Zhang, X. Q.; Zhang, J.; Lu, A. H. Energy Environ. Sci. 2013, 6, 3740. doi: 10.1039/c3ee41906a

    7. [7]

      (7) Lu, W.; Sculley, J. P.; Yuan, D.; Krishna, R.; Wei, Z.; Zhou, H. C. Angew. Chem. Int. Edit. 2012, 51, 480.

    8. [8]

      (8) Caskey, S. R.; Wong-Foy, A. G.; Matzger, A. J. J. Am. Chem. Soc. 2008, 130, 10870. doi: 10.1021/ja8036096

    9. [9]

      (9) Lu, W.; Sculley, J, P.; Yuan, D.; Krishna, R.; Zhou, H. C. J. Phys. Chem. C 2013, 117, 4057.

    10. [10]

      (10) Vaidhyanathan, R.; Iremonger, S. S.; Shimizu, G. K.; Boyd, P. G.; Alavi, S.; Woo, T. K. Angew. Chem. Int. Edit. 2012, 124, 1862. doi: 10.1002/ange.v124.8

    11. [11]

      (11) Wriedt, M.; Sculley, J. P.; Yakovenko, A. A.; Ma, Y.; Halder, G. J.; Balbuena, P. B.; Zhou, H. C. Angew. Chem. Int. Edit. 2012, 124, 9942. doi: 10.1002/ange.v124.39

    12. [12]

      (12) An, J.; Geib, S. J.; Rosi, N. L. J. Am. Chem. Soc. 2010, 132, 38. doi: 10.1021/ja909169x

    13. [13]

      (13) Wang, B.; Côté, A, P.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. Nature 2008, 453, 207. doi: 10.1038/nature06900

    14. [14]

      (14) Bux, H.; Liang, F.; Li, Y.; Cravillon, J.; Wiebcke, M.; Caro, J. J. Am. Chem. Soc. 2009, 131, 16000. doi: 10.1021/ja907359t

    15. [15]

      (15) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O' Keeffe, Michael.; Yaghi, O. M. Science 2008, 319, 939. doi: 10.1126/science.1152516

    16. [16]

      (16) Presser, V.; McDonough, J.; Yeon, S. H.; tsi, Y. Energy Environ. Sci. 2011, 4, 3059. doi: 10.1039/c1ee01176f

    17. [17]

      (17) Hao, G. P.; Li, W. C.; Qian, D.; Wang, G. H.; Zhang, W. P.; Zhang, T.; Wang, A. Q.; Schüth, F.; Bongard, H. J.; Lu, A. H. J. Am. Chem. Soc. 2011, 133, 11378. doi: 10.1021/ja203857g

    18. [18]

      (18) Xia, Y.; Mokaya, R.; Walker, G. S.; Zhu, Y. Adv. Energy Mater. 2011, 1, 678. doi: 10.1002/aenm.201100061

    19. [19]

      (19) Peng, X.; Zhang, Q. X.; Cheng, X.; Cao, D. P. Acta Phys. -Chim. Sin. 2011, 27, 2065. [彭璇, 张勤学, 成璇, 曹达鹏. 物理化学学报, 2011, 27, 2065.] doi: 10.3866/PKU.WHXB20110919

    20. [20]

      (20) Hudson, M. R.; Queen, W. L.; Mason, J. A.; Fickel, D. W.; Lobo, R. F.; Brown, C. M. J. Am. Chem. Soc. 2012, 134, 1970. doi: 10.1021/ja210580b

    21. [21]

      (21) Kim, J.; Lin, L. C.; Swisher, J. A.; Haranczyk, M.; Smit, B. J. Am. Chem. Soc. 2012, 134, 18940. doi: 10.1021/ja309818u

    22. [22]

      (22) Pham, T. D.; Liu, Q.; Lobo, R. F. Langmuir 2013, 29, 832. doi: 10.1021/la304138z

    23. [23]

      (23) Zhao, H. M.; Lin, D.; Yang, G.; Chun, Y.; Xu, Q. H. Acta Phys. -Chim. Sin. 2012, 28, 985. [赵会民, 林丹, 杨刚, 淳远, 须沁华. 物理化学学报, 2012, 28, 985.] doi: 10.3866/PKU.WHXB 201202071

    24. [24]

      (24) An, X, H.; Liu, D. H.; Zhong, C. L. Acta Phys. -Chim. Sin. 2011, 27, 553. [安晓辉, 刘大欢, 仲崇立. 物理化学学报, 2011, 27, 553.] doi: 10.3866/PKU.WHXB20110319

    25. [25]

      (25) Hao, G. P.; Li, W. C.; Lu, A. H. J. Mater. Chem. 2011, 21, 6447. doi: 10.1039/c0jm03564e

    26. [26]

      (26) Volker, P.; John, M. D.; Sun-Hwa, Y.; Yury, G. Energy Environ. Sci. 2011, 4, 3059. doi: 10.1039/c1ee01176f

    27. [27]

      (27) Qian, D.; Lei, C.; Wang, E. M.; Li, W. C.; Lu, A. H. ChemSusChem 2014, 7, 291. doi: 10.1002/cssc.v7.1

    28. [28]

      (28) Qian, D.; Lei, C.; Hao, G. P.; Li, W. C.; Lu, A. H. ACS Appl. Mater. Interfaces 2012, 4, 6125. doi: 10.1021/am301772k

    29. [29]

      (29) Hao, G. P.; Li, W. C.; Qian, D.; Lu, A. H. Adv. Mater. 2010, 22, 853. doi: 10.1002/adma.v22:7

    30. [30]

      (30) Zhao, Y. F.; Zhao, L.; Yao, K. X.; Yang, Y.; Zhang, Q.; Han, Y. J. Mater. Chem. 2012, 22, 19726. doi: 10.1039/c2jm33091a

    31. [31]

      (31) Liu, L.; Deng, Q. F.; Ma, T. Y.; Lin, X. Z.; Hou, X. X.; Liu, Y. P.; Yuan, Z. Y. J. Mater. Chem. 2011, 21, 16001. doi: 10.1039/c1jm12887f

    32. [32]

      (32) Mangun, C. L.; Benak, K. R.; Econimy, J.; Foster, K. L. Carbon 2001, 39, 1809. doi: 10.1016/S0008-6223(00)00319-5

    33. [33]

      (33) Xia, Y.; Mokaya, R.; Walker, G. S.; Zhu, Y. Adv. Energy Mater. 2011, 1, 678. doi: 10.1002/aenm.201100061

    34. [34]

      (34) Wang, J. C.; Irena, S.; Martin, O.; Martin, R. L.; Lars, B.; Andreas, H.; Liu, Q.; Stefan, K. ACS Appl. Mater. Interfaces. 2013, 5, 3160. doi: 10.1021/am400059t

    35. [35]

      (35) Hu, J. X.; Zhang, J. Zou, ; J, F.; Xiao, Q.; Zhong, Y. J.; Zhu, W. D. Acta Phys. -Chim. Sin. 2014, 30, 1169. [胡敬秀, 张静, 邹建锋, 肖强, 钟依均, 朱伟东. 物理化学学报, 2014, 30, 1169.] doi: 10.3866/PKU.WHXB201404223

    36. [36]

      (36) Zhuang, X. D.; Zhang, F.; Wu, D. Q.; Feng, X. L. Adv. Mater. 2014, 26, 3081. doi: 10.1002/adma.201305040

    37. [37]

      (37) Zhao, D. Y.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548. doi: 10.1126/science.279.5350.548

    38. [38]

      (38) Hao, G. P.; Li, W. C.; Qian, D.; Lu, A. H. Adv. Mater. 2010, 22, 853. doi: 10.1002/adma.v22:7

    39. [39]

      (39) Arri , R.; Hävecker, M.; Wrabetz, S.; Blume, R.; Lerch, M.; McGre r, J.; Parrott, E. P. J.; Zeitle, J. A.; Gladden, L. F.; Knop-Gericke, A.; Schlögl, R.; Su, D. S. J. Am. Chem. Soc. 2010, 132, 9616. doi: 10.1021/ja910169v

    40. [40]

      (40) Drage, T. C.; Arenillas, A.; Smith, K. M.; Pevida, C.; Piippo, S.; Snape, C. E. Fuel 2007, 86, 22. doi: 10.1016/j.fuel.2006.07.003

    41. [41]

      (41) Sirca, S.; lden, T. C.; Rao, M. B. Carbon 1996, 34, 1. doi: 10.1016/0008-6223(95)00128-X

    42. [42]

      (42) Sevilla, M.; Fuertes, A. B. J. Colloid Interface Sci. 2012, 366, 147. doi: 10.1016/j.jcis.2011.09.038

    43. [43]

      (43) Himeno, S.; Komatsu, T.; Fujita, S. J. Chem. Eng. Data 2005, 50, 369. doi: 10.1021/je049786x

    44. [44]

      (44) Vaidhyanathan, R.; Iremonger, S, S.; Shimizu, G. K. H.; Boyd, P. G.; Alavi, S.; Woo, T. K.; Science 2010, 330, 650. doi: 10.1126/science.1194237

    45. [45]

      (45) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. Science 2008, 319, 939. doi: 10.1126/science.1152516

    46. [46]

      (46) Zhao, Y.; Yao, K. X.; Yang, Y.; Zhang, Q.; Han, Y. J. Mater. Chem. 2012, 22, 19726. doi: 10.1039/c2jm33091a

    47. [47]

      (47) Li, B.; Zhang, Z.; Li, Y.; Yao. K.; Zhu, Y.; Deng, Z.; Yang, F.; Zhou, X.; Li, G.; Wu, H.; Nijem, N.; Chabal, J.; Lai, Z.; Han, Y.; Shi, Z.; Feng, S.; Li, J. Angew. Chem. Int. Edit. 2012, 51, 1412. doi: 10.1002/anie.201105966

    48. [48]

      (48) Hu, C.; Li, Y.; Ma, X. J. Mater. Chem. A 2014, 2, 4819. doi: 10.1039/c3ta14684g

    49. [49]

      (49) Bae, Y. S.; Farha, O. K.; Spokoyny, A. M.; Mirkin, C. A.; Hupp, J. T.; Snurr, R. Q. Chem. Commun. 2008, 35, 4135.

    50. [50]

      (50) Cavenati, S.; Grande, C. A.; Rodrigues, A. E. J. Chem. Eng. Data 2004, 49, 1095. doi: 10.1021/je0498917


  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    5. [5]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    6. [6]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    7. [7]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    10. [10]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    12. [12]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    13. [13]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    14. [14]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    18. [18]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    19. [19]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    20. [20]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

Metrics
  • PDF Downloads(272)
  • Abstract views(521)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return