Citation: SUN Xiao-Fei, XU You-Long, ZHENG Xiao-Yu, MENG Xiang-Fei, DING Peng, REN Hang, LI Long. Triple-Cation-Doped Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1513-1520. doi: 10.3866/PKU.WHXB201506082
-
Li3V2(PO4)3 and its triple-cation-doped counterpart Li2.85Na0.15V1.9Al0.1(PO4)2.9F0.1 were prepared by a conventional sol-gel method. The effect of Na-Al-F co-doping on the physicochemical properties, especially the electrochemical performance of Li3V2(PO4)3, were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), Raman spectroscopy, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), galvanostatic charge/discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). It was found that combined with surface coating from residual carbon, this triple-cation co-doping stabilizes the crystalline structure of Li3V2(PO4)3, suppresses secondary particle agglomeration, and improves the electric conductivity. Moreover, reversible deinsertion/insertion of the third lithium ion at deeper charge/discharge is enabled by such doping. As a consequence, the practical electrochemical performance of Li3V2(PO4)3 is significantly improved. The specific capacity of the doped material at a low rate of 1/9C is 172 mAh·g-1 and it maintains 115 mAh·g-1 at a rate of 14C, while the specific capacities of the undoped sample at 1/9C and 6C are only 141 and 98 mAh·g-1, respectively. After 300 cycles at 1C rate, the doped material has a capacity of 118 mAh·g-1, which is 32.6% higher than that of the undoped counterpart. It is also noteworthy that the multiplateau discharge curve of Li3V2(PO4)3 transforms to a slope-like curve, indicating the possibility of a different lithium intercalation mechanism after this co-doping.
-
-
[1]
(1) Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a
-
[2]
(2) Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced Materials 2010, 22, E28.
-
[3]
(3) Whittingham, M. S. Proceedings of the IEEE 2012, 100, 1518. doi: 10.1109/JPROC.2012.2190170
-
[4]
(4) odenough, J. B.; Kim, Y. Chemistry of Materials 2010, 22, 587. doi: 10.1021/cm901452z
-
[5]
(5) Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Advanced Materials 2010, 22, E170.
-
[6]
(6) Liu, Y. H.; Xu, Y. L.; Sun, X. F. New Chemical Materials 2014, 42, 1. [刘养浩, 徐友龙, 孙孝飞. 化工新型材料, 2014, 42, 1.]
-
[7]
(7) Sun, X. F.; Xu, Y. L.; Liu, Y. H.; Li, L. Acta Phys. -Chim. Sin. 2012, 28, 2885. [孙孝飞, 徐友龙, 刘养浩, 李璐. 物理化学学报, 2012, 28, 2885.] doi: 10.3866/PKU.WHXB201209271
-
[8]
(8) Manthiram, A. The Journal of Physical Chemistry Letters 2011, 2, 176. doi: 10.1021/jz1015422
-
[9]
(9) Masquelier, C.; Croguennec, L. Chemical Reviews 2013, 113, 6552. doi: 10.1021/cr3001862
-
[10]
(10) Lee, S.; Park, S. S. The Journal of Physical Chemistry C 2012, 116, 25190. doi: 10.1021/jp306105g
-
[11]
(11) Fei, L.; Lu, W.; Sun, L.; Wang, J.; Wei, J.; Chan, H. L. W.; Wang, Y. RSC Advances 2013, 3, 1297. doi: 10.1021/jp044247k
-
[12]
(12) Hautier, G.; Jain, A.; Ong, S. P.; Kang, B.; Moore, C.; Doe, R.; Ceder, G. Chemistry of Materials 2011, 23, 3495. doi: 10.1021/cm200949v
-
[13]
(13) Lu, Y.; Wang, L.; Song, J.; Zhang, D.; Xu, M.; odenough, J. B. Journal of Materials Chemistry A 2013, 1, 68. doi: 10.1039/C2TA00029F
-
[14]
(14) Yin, S. C.; Grondey, H.; Strobel, P.; Anne, M.; Nazar, L. F. J. Am. Chem. Soc. 2013, 125, 10402. doi: 10.1021/ja034565h
-
[15]
(15) Morcrette, M.; Leriche, J. B.; Patoux, S.; Wurm, C.; Masquelier, C. Electrochem. Solid State Lett. 2003, 6, A80.
-
[16]
(16) Yang, C. C.; Kung, S. H.; Lin, S. J.; Chien, W. C. Journal of Power Sources 2014, 251, 296. doi: 10.1016/j.jpowsour.2013.11.072
-
[17]
(17) Su, J.; Wu, X. L.; Lee, J. S.; Kim, J.; Guo, Y. G. Journal of Materials Chemistry A 2013, 1, 2508. doi: 10.1039/c2ta01254e
-
[18]
(18) Tang, Y.; Zhong, Y. J.; Ou, Q. Z.; Liu, H.; Zhong, B. H.; Guo, X. D.; Wang, X. L. Acta Phys. -Chim. Sin. 2015, 31, 277. [唐艳, 钟艳君, 欧庆祝, 刘恒, 钟本和, 郭孝东, 王辛龙. 物理化学学报, 2015, 31, 277.] doi: 10.3866/PKU.WHXB201412172
-
[19]
(19) Zhang, S.; Wu, Q.; Deng, C.; Liu, F. L.; Zhang, M.; Meng, F. L.; Gao, H. Journal of Power Sources 2012, 218, 56. doi: 10.1016/j.jpowsour.2012.06.002
-
[20]
(20) Bini, M.; Ferrari, S.; Capsoni, D.; Massarotti, V. Electrochimica Acta 2011, 56, 2648. doi: 10.1016/j.electacta.2010.12.011
-
[21]
(21) Liu, H.; Bi, S.; Wen, G.; Teng, X.; Gao, P.; Ni, Z.; Zhu, Y.; Zhang, F. Journal of Alloys and Compounds 2012, 543, 99. doi: 10.1016/j.jallcom.2012.07.077
-
[22]
(22) Yan, J.; Yuan, W.; Tang, Z. Y.; Xie, H.; Mao, W. F.; Ma, L. Journal of Power Sources 2012, 209, 251. doi: 10.1016/j.jpowsour.2012.02.110
-
[23]
(23) Pivko, M.; Arcon, I.; Bele, M.; Dominko, R.; Gaberscek, M. Journal of Power Sources 2012, 216, 145. doi: 10.1016/j.jpowsour.2012.05.037
-
[24]
(24) Gao, C.; Liu, H.; Liu, G.; Zhang, J.; Wang, W. Materials Science and Engineering B 2013, 178, 272. doi: 10.1016/j.mseb.2012.11.016
-
[25]
(25) Wang, J.; Wang, Z.; Li, X.; Guo, H.; Wu, X.; Zhang, X.; Xiao, W. Electrochimica Acta 2013, 87, 224. doi: 10.1016/j.electacta.2012.09.014
-
[26]
(26) Duan, W.; Hu, Z.; Zhang, K.; Cheng, F.; Tao, Z.; Chen, J. Nanoscale 2013, 5, 6485. doi: 10.1039/c3nr01617j
-
[27]
(27) Zheng, J. C.; Li, X. H.; Wang, Z. X.; Li, J. H.; Wu, L.; Li, L. J.; Guo, H. J. Acta Phys. -Chim. Sin. 2009, 25, 1916. [郑俊超, 李新海, 王志兴, 李金辉, 伍凌, 李灵均, 郭华军. 物理化学学报, 2009, 25, 1916.] doi: 10.3866/PKU.WHXB20090929
-
[28]
(28) Kuang, Q.; Zhao, Y. Journal of Power Sources 2012, 216, 33. doi: 10.1016/j.jpowsour.2012.04.078
-
[29]
(29) Yang, S. T.; Zhao, N. H.; Dong, H. Y.; Yang, J. X.; Hue, H. Y. Electrochimica Acta 2005, 51, 166. doi: 10.1016/j.electacta.2005. 04.013
-
[30]
(30) Yuan, W.; Yan, J.; Tang, Z.; Sha, O.; Wang, J.; Mao, W.; Ma, L. Electrochimica Acta 2012, 72, 138.
-
[31]
(31) Sun, X.; Xu, Y.; Ding, P.; Chen, G.; Zheng, X. Mater. Lett. 2013, 113, 186. doi: 10.1016/j.matlet.2013.09.077
-
[32]
(32) Sun, X.; Xu, Y.; Wang, J. J. Solid State Electrochem. 2012, 16, 1781. doi: 10.1007/s10008-011-1619-x
-
[33]
(33) Sato, M.; Ohkawa, H.; Yoshida, K.; Saito, M.; Uematsu, K.; Toda, K. Solid State Ion. 2000, 135, 137. doi: 10.1016/S0167-2738(00)00292-7
-
[34]
(34) Sun, X.; Xu, Y.; Ding, P.; Chen, G.; Zheng, X.; Zhang, R.; Li, L. Journal of Power Sources 2014, 255, 163. doi: 10.1016/j.jpowsour.2013.12.106
-
[35]
(35) Sun, X.; Xu, Y.; Jia, M.; Ding, P.; Liu, Y.; Chen, K. Journal of Materials Chemistry A 2013, 1, 2501. doi: 10.1039/c2ta01338j
-
[36]
(36) Tang, Y.; Wang, C.; Zhou, J.; Bi, Y.; Liu, Y.; Wang, D.; Shi, S.; Li, G. Journal of Power Sources 2013, 227, 199. doi: 10.1016/j.jpowsour.2012.11.020
-
[1]
-
-
[1]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[2]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[3]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[4]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[5]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[6]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[7]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[8]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[9]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[10]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[11]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[12]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[13]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[14]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[15]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[16]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[17]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[18]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[19]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[20]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[1]
Metrics
- PDF Downloads(267)
- Abstract views(582)
- HTML views(51)