Citation:
	            
		            ZENG  Yu-Qun, GUO  Yong-Sheng, WU  Bing-Bin, HONG  Xiang, WU  Kai, ZHONG  Kai-Fu. Synthesis and Electrochemical Performance of Plastic Crystal Compound-Based Ionic Liquid[J]. Acta Physico-Chimica Sinica,
							;2015, 31(7): 1351-1358.
						
							doi:
								10.3866/PKU.WHXB201505121
						
					
				
					
				
	        
- 
	                	
Highly pure plastic crystal, 1-ethyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (P12TFSI), was synthesized and purified by an easily industrializable recrystallization method. The P12TFSI/LiFSI ionic liquid was obtained by mixing P12TFSI with 30% (molar fraction, x) LiFSI. Electrochemical characterization methods including cyclic voltammetry, constant voltage polarization and charge/discharge at constant current were used to investigate the electrochemical window, stability vs Al corrosion, and battery performance of the ionic liquid.Awide electrochemical window of 5.00 V, non-corrosion of theAl current collector, and 0.92mS·cm-1 of ionic conductivity at room temperature were observed. LiCoO2/Li batteries assembled using this ionic liquid electrolyte showed od charge-discharge characteristics and cycle performance, comparable with those of carbonate-based electrolyte at low rate. The specific capacity of the LiCoO2 remained 175 mAh·g-1 after 20 cycles (95.1% capacity retention) despite cycling at a high voltage up to 4.50 V. These results indicate that the plastic crystal-based ionic liquid P12TFSI/LiFSI could be potentially applied in high-energy density lithium secondary batteries.
- 
								Keywords:
								
 - 
												
Lithium ion battery
, - Plastic crystal,
 - Ionic liquid,
 - Pyrrolidinium,
 - High voltage
 
 - 
												
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
(1) Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741
 - 
			
                    [2]
                
			
(2) Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a
 - 
			
                    [3]
                
			
(3) Samad, Y. A.; Asghar, A.; Hashaikeh, R. Renewable Energy 2013, 56, 90. doi: 10.1016/j.renene.2012.09.015
 - 
			
                    [4]
                
			
(4) Ren, X. Z.; Liu, T.; Sun, L. N.; Zhang, P. X. Acta Phys. -Chim. Sin. 2014, 30 (9), 1641. [任祥忠, 刘涛, 孙灵娜, 张培新.物理化学学报, 2014, 30 (9), 1641.] doi: 10.3866/PKU.WHXB201406172
 - 
			
                    [5]
                
			
(5) Xue, Q. R.; Li, J. L.; Xu, G. F.; Hou, P. F.; Yan, G.; Dai, Y.; Wang, X. D.; Gao, F. Acta Phys. -Chim. Sin. 2014, 30 (9), 1667. [薛庆瑞, 李建玲, 徐国峰, 侯朋飞, 晏刚, 代宇, 王新东, 高飞. 物理化学学报, 2014, 30 (9), 1667.] doi: 10.3866/PKU.WHXB201406251
 - 
			
                    [6]
                
			
(6) Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Nat. Mater. 2009, 8, 621. doi: 10.1038/nmat2448
 - 
			
                    [7]
                
			
(7) Galinski, M.; Lewandowski, A.; Stepniak, I. Electrochim. Acta 2006, 51, 5567. doi: 10.1016/j.electacta.2006.03.016
 - 
			
                    [8]
                
			
(8) Papageorgiou, N.; Athanassov, Y.; Armand, M.; Bonhote, P.; Pettersson, H.; Azam, A.; Grätzel, M. J. Electrochem. Soc. 1996, 143, 3099.
 - 
			
                    [9]
                
			
(9) Fung, Y. S.; Zhou, R. Q. J. Power Sources 1999, 81/82, 891.
 - 
			
                    [10]
                
			
(10) Henderson, W. A.; Young, V. G.; Fox, D. M. Chem. Commun. 2006, No. 12, 3708.
 - 
			
                    [11]
                
			
(11) Zhou, Z. B.; Matsumoto, H.; Tatsumi, K. Chem. -Eur. J. 2006, 12 (8), 2196.
 - 
			
                    [12]
                
			
(12) Domanska, U.; Królikowskaa, M.; Paduszynski, K. Fluid Phase Equilib. 2011, 303, 1. doi: 10.1016/j.fluid.2010.12.008
 - 
			
                    [13]
                
			
(13) Matsumoto, H.; Terasawa, N.; Umecky, T. Chem. Lett. 2008, 37, 1020. doi: 10.1246/cl.2008.1020
 - 
			
                    [14]
                
			
(14) Liu, Q. S.; Yan, P. F.; Yang, M.; Tan, Z. C.; Li, C. P.; Urs, W. B. Acta Phys. -Chim. Sin.2011, 27 (12), 2762. [刘青山, 颜佩芳, 杨淼, 谭志诚, 李长平, Urs, W. B. 物理化学学报, 2011, 27 (12), 2762.] doi: 10.3866/PKU.WHXB20112762
 - 
			
                    [15]
                
			
(15) Sakaebe, H.; Matsumoto, H. Electrochem. Commun. 2003, 5, 594. doi: 10.1016/S1388-2481(03)00137-1
 - 
			
                    [16]
                
			
(16) Matsumoto, H.; Sakaebe, H.; Tatsumi, K.; Kikuta, M.; Ishiko, E.; Kono, M. J. Power Sources 2006, 160, 1308. doi: 10.1016/j.jpowsour.2006.02.018
 - 
			
                    [17]
                
			
(17) Borgel, V.; Markevich, E.; Aurbach, D.; Semraub, G. J. Power Sources 2009, 189, 331. doi: 10.1016/j.jpowsour.2008.08.099
 - 
			
                    [18]
                
			
(18) Henderson, W. A.; Passerini, S. Chem. Mater. 2004, 16, 2881. doi: 10.1021/cm049942j
 - 
			
                    [19]
                
			
(19) MacFarlane, D. R.; Huang, J. H.; Forsyth, M. Nature 1999, 402, 792. doi: 10.1038/45514
 - 
			
                    [20]
                
			
(20) MacFarlane, D. R.; Sun, J.; Forsyth, M.; Meakin, P.; Amini, N. J. Phys. Chem. 1999, 103, 4164. doi: 10.1021/jp984145s
 - 
			
                    [21]
                
			
(21) Sun, J.; Forsyth, M.; MacFarlane, D. R. J. Phys. Chem. 1998, 102, 8858. doi: 10.1021/jp981159p
 - 
			
                    [22]
                
			
(22) Sylla, S.; Sanchez, J. Y.; Armand, M. Electrochim. Acta 1992, 37, 1699. doi: 10.1016/0013-4686(92)80141-8
 - 
			
                    [23]
                
			
(23) Henderson, W. A.; Young, V. G.; Passerini, S.; Trulove, P. C. Chem. Mater. 2006, 18, 934. doi: 10.1021/cm051936f
 - 
			
                    [24]
                
			
(24) Efthimiadis, J.; Pas, S. J.; Forsyth, M. Solid State Ionics 2002, 154-155, 279.
 - 
			
                    [25]
                
			
(25) Awaludin, Z.; Okajima, T.; Ohsaka, T. Electrochem. Commun. 2013, 31, 100. doi: 10.1016/j.elecom.2013.03.020
 - 
			
                    [26]
                
			
(26) Zhang, S. S.; Jow, T. R. J. Power Sources 2002, 109, 458. doi: 10.1016/S0378-7753(02)00110-6
 - 
			
                    [27]
                
			
(27) Miao, R. R.; Yang, J.; Feng, X. J.; Jia, H.; Wang, J. L.; Nuli, Y. N. J. Power Sources 2014, 271, 291.
 - 
			
                    [28]
                
			
(28) Lewandowski, A.; ?widerska -Mocek, A.; Acznik, I. Electrochim. Acta 2010, 55, 1990.
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
 - 
				[2]
				
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
 - 
				[3]
				
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
 - 
				[4]
				
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
 - 
				[5]
				
Xintong Zhu , Bin Cao , Chong Yan , Cheng Tang , Aibing Chen , Qiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096
 - 
				[6]
				
Jingshuo Zhang , Yue Zhai , Ziyun Zhao , Jiaxing He , Wei Wei , Jing Xiao , Shichao Wu , Quan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006
 - 
				[7]
				
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028
 - 
				[8]
				
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
 - 
				[9]
				
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007
 - 
				[10]
				
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085
 - 
				[11]
				
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
 - 
				[12]
				
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042
 - 
				[13]
				
Xuechen Hu , Qiuying Xia , Fan Yue , Xinyi He , Zhenghao Mei , Jinshi Wang , Hui Xia , Xiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046
 - 
				[14]
				
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
 - 
				[15]
				
Chenyue Huang , Hongfei Zheng , Ning Qin , Canpei Wang , Liguang Wang , Jun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051
 - 
				[16]
				
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
 - 
				[17]
				
Zilin Hu , Yaoshen Niu , Xiaohui Rong , Yongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005
 - 
				[18]
				
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
 - 
				[19]
				
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
 - 
				[20]
				
Tingting Yu , Si Chen , Lianglong Sun , Tongtong Shi , Kai Sun , Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(299)
 - Abstract views(869)
 - HTML views(3)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: