Citation: WANG Nan, LIANG Zhu-Rong, WANG Xin, XU Xue-Qing, FANG Jun, WANG Jun-Xia, GUO Hua-Fang. CuInS2 Quantum Dot-Sensitized Solar Cells Fabricated via a Linker-Assisted Adsorption Approach[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1331-1337. doi: 10.3866/PKU.WHXB201505072 shu

CuInS2 Quantum Dot-Sensitized Solar Cells Fabricated via a Linker-Assisted Adsorption Approach

  • Received Date: 13 April 2015
    Available Online: 7 May 2015

    Fund Project: 国家自然科学基金(21073193, 21273241, 21376195) (21073193, 21273241, 21376195) 广东省教育部产学研结合重大科技专项项目(2012B091100476) (2012B091100476)广州市科技计划项目(2014J4100218)资助 (2014J4100218)

  • Colloidal chalcopyrite CuInS2 (CIS) quantum dots (QDs) were synthesized using copper(I) iodine (CuI) and indium(III) acetate (InAc3) as metal cationic precursors, and dodecanethiol (DDT) as the sulfur source and solvent. The microstructure and optical properties of the prepared CIS QDs were characterized by X-ray diffraction (XRD), Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and UVVis absorption spectroscopy. The results showed that the CIS consisted of chalcopyrite phase and exhibited Cu-Au ordering. With prolonged reaction time, the grain sizes of the QDs became larger and the absorption edges of the CIS QDs showed a red-shift owing to the size-induced quantum confinement effect. For the first time, DDT-capped CIS QDs with narrow size distribution were connected to the inner surface of mesoporous TiO2 films via a thioglycolic acid (TGA)-assisted adsorption approach, which was simple and easy to carry out. The adsorption behaviors of both TGA and the CIS QDs on the TiO2 films were detected by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The results indicated that TGA was adsorbed onto the surface of TiO2 via COOH groups while the ―SH group was exposed outside, and replaced DDT at the surface of the CIS QDs, leading to the attachment between TiO2 and CIS. It was revealed that the CIS QDs of ~3.6 nm in size exhibited the best light absorption capacity and photovoltaic performance. An over-coating of CdS significantly improved the performance of the QDS

  • 
    1. [1]

      (1) Tian, J. J.; Cao, G. Z. Nano Rev. 2013, 4, 22578.

    2. [2]

      (2) Hosseinpour-Mashkani, S. M.; Salavati-Niasari, M.; Mohandes, F. Ind. Eng Chem. 2014, 20, 3800. doi: 10.1016/j.jiec.2013.12.082

    3. [3]

      (3) Beard, M. C. J. Phys. Chem. Lett. 2011, 2, 1282. doi: 10.1021/jz200166y

    4. [4]

      (4) Booth, M.; Brown, A. P.; Evans, S. D.; Critchley, K. Chem. Mater. 2012, 24, 2064. doi: 10.1021/cm300227b

    5. [5]

      (5) Pathan, H. M.; Lokhande, C. D. Appl. Surf. Sci. 2004, 4, 003.

    6. [6]

      (6) Senthamilselvi, V.; Saravanakumar, K.; Jabena-Begum, N.; Anandhi, R.; Ravichandran, A. T.; Sakthivel, B.; Ravichandran, K. J. Mater. Sci: Mater-Electron. 2011, 23, 302.

    7. [7]

      (7) Santra, P. K.; Nair, P. V.; Thomas, K. G.; Kamat, P. V. J. Phys. Chem. Lett. 2013, 4, 722. doi: 10.1021/jz400181m

    8. [8]

      (8) Lutz, T.; MacLachlan, A.; Sudlow, A.; Nelson, J.; Hill, M. S.; Molloy, K. C.; Haque, S. A. Phys. Chem. Chem. Phys. 2012, 14, 16192. doi: 10.1039/c2cp43534a

    9. [9]

      (9) Wang, Y. Q.; Rui, Y. C.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. ACS Appl. Mater. Inter. 2013, 5, 11858. doi: 10.1021/am403555c

    10. [10]

      (10) Chen, Z. G.; Tang, M. H.; Song, L. L.; Tang, G. Q.; Zhang, B. J.; Zhang, L. S.; Yang, J. M.; Hu, J. Q. Nanoscale Res. Lett. 2013, 8, 354. doi: 10.1186/1556-276X-8-354

    11. [11]

      (11) Li, T. L.; Lee, Y. L.; Teng, H. Energy Environ. Sci. 2012, 5, 5315. doi: 10.1039/C1EE02253A

    12. [12]

      (12) Luo, J. H.; Wei, H. Y.; Huang, Q. L.; Hu, X.; Zhao H. F.; Yu, R. C.; Li, D. M.; Luo, Y. H.; Meng, Q. B. Chem. Commun. 2013, 49, 3881. doi: 10.1039/c3cc40715b

    13. [13]

      (13) Chang, C. C.; Chen, J. K.; Chen, C. P.; Yang, C. H.; Chang, J. Y. ACS Appl. Mater. Inter. 2013, 5, 11296. doi: 10.1021/am403531q

    14. [14]

      (14) Xu, X. Q.; Giménez, S.; Mora-Seró, I.; Abate, A.; Bisquert, J.; Xu, G. Mater. Chem. Phys. 2010, 124, 709. doi: 10.1016/j.matchemphys.2010.07.041

    15. [15]

      (15) Li, L.; Pandey, A.; Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I. J. Am. Chem. Soc. 2011, 133, 1176. doi: 10.1021/ja108261h

    16. [16]

      (16) Xu, X. Q.; Wan, Q. C.; Luan, C. Y.; Mei, F. Q.; Zhao, Q.; An, P.; Liang, Z. L.; Xu, G.; Zapien., J. A. ACS Appl. Mater. Inter. 2013, 5, 10605. doi: 10.1021/am402502a

    17. [17]

      (17) Torimoto, T.; Tada, M.; Dai, M. L.; Kameyama, T.; Suzuki, S.; Kuwabata, S. J. Phys. Chem. C 2012, 116, 21895. doi: 10.1021/jp307305q

    18. [18]

      (18) Yin, Z.; Hu, Z. L.; Ye, H. H.; Teng, F.; Yang, C. H.; Tang, A.W. Appl. Surf. Sci. 2014, 307, 489. doi: 10.1016/j.apsusc.2014.04.063

    19. [19]

      (19) Kolny-Olesiak, J.; Weller, H. ACS Appl. Mater. Inter. 2013, 5, 12221. doi: 10.1021/am404084d

    20. [20]

      (20) Liu, Z. P.; Wang, L. L.; Hao, Q. Y.; Wang, D.; Tang, K. B.; Zuo, M.; Yang, Q. CrystEngComm 2013, 15, 7192. doi: 10.1039/c3ce40631h

    21. [21]

      (21) Oja, I.; Nanu, M.; Katerski, A.; Krunks, M.; Mere, A.; Raudoja, J.; ossens, A. Thin Solid Films 2005, 80, 480.

    22. [22]

      (22) Li, T. L.; Lee, Y. L.; Teng, H. J. Mater. Chem. 2011, 21, 5089. doi: 10.1039/c0jm04276e

    23. [23]

      (23) Li, J. Z.; Kong, F. T.; Wu, G. H.; Huang, Y.; Chen, W. C.; Dai, S. Y. Acta Phys. -Chim. Sin. 2013, 29, 1851. [李景哲, 孔凡太, 武国华, 黄阳, 陈汪超, 戴松. 物理化学学报, 2013, 29, 1851.] doi: 10.3866/PKU.WHXB201306172

    24. [24]

      (24) Li, W. X.; Hu, L. H.; Dai, S. Y. Acta Phys. -Chim. Sin. 2011, 27, 2367. [李文欣, 胡林华, 戴松元. 物理化学学报, 2011, 27, 2367.] doi: 10.3866/PKU.WHXB20111011

    25. [25]

      (25) Bisquert, J. J. Phys. Chem. B 2002, 106, 325. doi: 10.1021/jp011941g

    26. [26]

      (26) Guo, X. D.; Ma, B. B.; Wang, L. D.; Gao, R.; Dong, H. P.; Qiu, Y. Acta Phys. -Chim. Sin. 2013, 29, 1240. [郭旭东, 马蓓蓓, 王立铎, 高瑞, 董豪鹏, 邱勇. 物理化学学报, 2013, 29, 1240.] doi: 10.3866/PKU.WHXB201303261


    1. [1]

      (1) Tian, J. J.; Cao, G. Z. Nano Rev. 2013, 4, 22578.

    2. [2]

      (2) Hosseinpour-Mashkani, S. M.; Salavati-Niasari, M.; Mohandes, F. Ind. Eng Chem. 2014, 20, 3800. doi: 10.1016/j.jiec.2013.12.082

    3. [3]

      (3) Beard, M. C. J. Phys. Chem. Lett. 2011, 2, 1282. doi: 10.1021/jz200166y

    4. [4]

      (4) Booth, M.; Brown, A. P.; Evans, S. D.; Critchley, K. Chem. Mater. 2012, 24, 2064. doi: 10.1021/cm300227b

    5. [5]

      (5) Pathan, H. M.; Lokhande, C. D. Appl. Surf. Sci. 2004, 4, 003.

    6. [6]

      (6) Senthamilselvi, V.; Saravanakumar, K.; Jabena-Begum, N.; Anandhi, R.; Ravichandran, A. T.; Sakthivel, B.; Ravichandran, K. J. Mater. Sci: Mater-Electron. 2011, 23, 302.

    7. [7]

      (7) Santra, P. K.; Nair, P. V.; Thomas, K. G.; Kamat, P. V. J. Phys. Chem. Lett. 2013, 4, 722. doi: 10.1021/jz400181m

    8. [8]

      (8) Lutz, T.; MacLachlan, A.; Sudlow, A.; Nelson, J.; Hill, M. S.; Molloy, K. C.; Haque, S. A. Phys. Chem. Chem. Phys. 2012, 14, 16192. doi: 10.1039/c2cp43534a

    9. [9]

      (9) Wang, Y. Q.; Rui, Y. C.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. ACS Appl. Mater. Inter. 2013, 5, 11858. doi: 10.1021/am403555c

    10. [10]

      (10) Chen, Z. G.; Tang, M. H.; Song, L. L.; Tang, G. Q.; Zhang, B. J.; Zhang, L. S.; Yang, J. M.; Hu, J. Q. Nanoscale Res. Lett. 2013, 8, 354. doi: 10.1186/1556-276X-8-354

    11. [11]

      (11) Li, T. L.; Lee, Y. L.; Teng, H. Energy Environ. Sci. 2012, 5, 5315. doi: 10.1039/C1EE02253A

    12. [12]

      (12) Luo, J. H.; Wei, H. Y.; Huang, Q. L.; Hu, X.; Zhao H. F.; Yu, R. C.; Li, D. M.; Luo, Y. H.; Meng, Q. B. Chem. Commun. 2013, 49, 3881. doi: 10.1039/c3cc40715b

    13. [13]

      (13) Chang, C. C.; Chen, J. K.; Chen, C. P.; Yang, C. H.; Chang, J. Y. ACS Appl. Mater. Inter. 2013, 5, 11296. doi: 10.1021/am403531q

    14. [14]

      (14) Xu, X. Q.; Giménez, S.; Mora-Seró, I.; Abate, A.; Bisquert, J.; Xu, G. Mater. Chem. Phys. 2010, 124, 709. doi: 10.1016/j.matchemphys.2010.07.041

    15. [15]

      (15) Li, L.; Pandey, A.; Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I. J. Am. Chem. Soc. 2011, 133, 1176. doi: 10.1021/ja108261h

    16. [16]

      (16) Xu, X. Q.; Wan, Q. C.; Luan, C. Y.; Mei, F. Q.; Zhao, Q.; An, P.; Liang, Z. L.; Xu, G.; Zapien., J. A. ACS Appl. Mater. Inter. 2013, 5, 10605. doi: 10.1021/am402502a

    17. [17]

      (17) Torimoto, T.; Tada, M.; Dai, M. L.; Kameyama, T.; Suzuki, S.; Kuwabata, S. J. Phys. Chem. C 2012, 116, 21895. doi: 10.1021/jp307305q

    18. [18]

      (18) Yin, Z.; Hu, Z. L.; Ye, H. H.; Teng, F.; Yang, C. H.; Tang, A.W. Appl. Surf. Sci. 2014, 307, 489. doi: 10.1016/j.apsusc.2014.04.063

    19. [19]

      (19) Kolny-Olesiak, J.; Weller, H. ACS Appl. Mater. Inter. 2013, 5, 12221. doi: 10.1021/am404084d

    20. [20]

      (20) Liu, Z. P.; Wang, L. L.; Hao, Q. Y.; Wang, D.; Tang, K. B.; Zuo, M.; Yang, Q. CrystEngComm 2013, 15, 7192. doi: 10.1039/c3ce40631h

    21. [21]

      (21) Oja, I.; Nanu, M.; Katerski, A.; Krunks, M.; Mere, A.; Raudoja, J.; ossens, A. Thin Solid Films 2005, 80, 480.

    22. [22]

      (22) Li, T. L.; Lee, Y. L.; Teng, H. J. Mater. Chem. 2011, 21, 5089. doi: 10.1039/c0jm04276e

    23. [23]

      (23) Li, J. Z.; Kong, F. T.; Wu, G. H.; Huang, Y.; Chen, W. C.; Dai, S. Y. Acta Phys. -Chim. Sin. 2013, 29, 1851. [李景哲, 孔凡太, 武国华, 黄阳, 陈汪超, 戴松. 物理化学学报, 2013, 29, 1851.] doi: 10.3866/PKU.WHXB201306172

    24. [24]

      (24) Li, W. X.; Hu, L. H.; Dai, S. Y. Acta Phys. -Chim. Sin. 2011, 27, 2367. [李文欣, 胡林华, 戴松元. 物理化学学报, 2011, 27, 2367.] doi: 10.3866/PKU.WHXB20111011

    25. [25]

      (25) Bisquert, J. J. Phys. Chem. B 2002, 106, 325. doi: 10.1021/jp011941g

    26. [26]

      (26) Guo, X. D.; Ma, B. B.; Wang, L. D.; Gao, R.; Dong, H. P.; Qiu, Y. Acta Phys. -Chim. Sin. 2013, 29, 1240. [郭旭东, 马蓓蓓, 王立铎, 高瑞, 董豪鹏, 邱勇. 物理化学学报, 2013, 29, 1240.] doi: 10.3866/PKU.WHXB201303261


  • 加载中
    1. [1]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    2. [2]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    5. [5]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    6. [6]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    7. [7]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    8. [8]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    9. [9]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    10. [10]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    11. [11]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    12. [12]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    13. [13]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    14. [14]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Liuxie Liu Jing He Jiali Du Shuang Mao Qianggen Li . Extension of Computational Chemical-Assisted Dipole Moment Measurement Experiment. University Chemistry, 2025, 40(3): 363-370. doi: 10.12461/PKU.DXHX202407108

    18. [18]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(319)
  • Abstract views(665)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return