Citation: DING Wan-Jian, FANG Wei-Hai, CHAI Zhi-Fang, WANG Dong-Qi. Performance of Twelve Density Functional Theory Methods in the Characterization of Three Trivalent Uranium Complexes[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1283-1301. doi: 10.3866/PKU.WHXB201504291
-
We report a comparative study on the characterization of three trivalent uranium complexes using 12 density functional theory (DFT) methods, i.e., BP86, PBE, B3LYP, B3PW91, BHandHLYP, PBE0, X3LYP, CAM-B3LYP, TPSS, M06L, M06, and M06-2X, representing (meta-)GGA and hybrid (meta-)GGA levels of treatment of molecular systems. The MP2 method was used in single-point calculations to provide an ab initio view of the electronic structure. Three model systems in the experimental work on the activation of CO2 and CS2 by a trivalent uranium complex (Tp*)2U-η1-CH2Ph (Cpd2) were used i.e., (Tp*)2U-η1-CH2Ph (Cpd2), (Tp*)2U-κ2- O2CCH2Ph (Cpd3), and (Tp*)2U-κ2-S2CCH2Ph (Cpd4) (Tp=hydrotris(3, 5-dimethylpyrazolyl)borate). The hybrid functionals, B3LYP and B3PW91, displayed od performance in view of both the geometrical and electronic structures. The MP2 method generated consistent results as DFT methods for Cpd2 and Cpd3, while provided an odd picture of the electronic structure of Cpd4 that may be due to its single determinant feature, leading to its capture of an electronic configuration of Cpd4 different from the one with the DFT methods. The use of a quasi-relativistic 5f-in-core ECP (LPP) treatment for U(III) in the thermodynamic calculations was supported by the calculations with a small-core ECP treatment (SPP) for U. Owing to increasing interests in low-valent actinide molecular systems, this work complements previous comparative studies, which mainly focus on highvalent actinide complexes, and provides timely information on the performance of 12 widely used DFT methods in studying low-valent actinide systems. It is expected to contribute to a more sensible selection of DFT methods in the study of low-valent actinide molecular systems.
-
-
[1]
(1) Morss, L. R.; Edelstein, N. M.; Fuger, J.; Katz, J. J. The Chemistry of the Actinide and Transactinide Elements, 3rd ed.; Springer: Dordrecht, The Netherlands, 2008.
-
[2]
(2) Streitwieser, A., Jr.; Mueller-Westerhoff, U. J. Am. Chem. Soc. 1968, 90, 7364.
-
[3]
(3) Chang, A. H. H.; Pitzer, R. M. J. Am. Chem. Soc. 1989, 111, 2500. doi: 10.1021/ja00189a022
-
[4]
(4) Li, J.; Bursten, B. E. J. Am. Chem. Soc. 1998, 120, 11456. doi: 10.1021/ja9821145
-
[5]
(5) Seyferth, D. Organometallics 2004, 23, 3562. doi: 10.1021/om0400705
-
[6]
(6) Gagliardi, L.; Roos, B. O. Nature 2005, 433, 848. doi: 10.1038/nature03249
-
[7]
(7) Roos, B. O.; Malmqvist, P.; Gagliardi, L. J. Am. Chem. Soc. 2006, 128, 17000. doi: 10.1021/ja066615z
-
[8]
(8) Gagliardia, L.; Roos, B. O. Chem. Soc. Rev. 2007, 36, 893. doi: 10.1039/b601115m
-
[9]
(9) Wu, X.; Lu, X. J. Am. Chem. Soc. 2007, 129, 2171. doi: 10.1021/ja067281g
-
[10]
(10) Infante, I.; Gagliardi, L.; Scuseria, G. E. J. Am. Chem. Soc. 2008, 130, 7459. doi: 10.1021/ja800847j
-
[11]
(11) Hu, H. S.; Qiu, Y. H.; Xiong, X. G.; Schwarz, W. H. E.; Li, J. Chem. Sci. 2012, 3, 2786. doi: 10.1039/c2sc20329d
-
[12]
(12) Haschke, J. M.; Stakebake, J. L. The Chemistry of the Actinide and Transactinide Elements, Vol. 5; Morss, L. R., Edelstein, N. M., Fuger, N. M., Katz, J. J. Eds.; Springer: Dordrecht, 2008; pp 3199-3272.
-
[13]
(13) Choppin, G. R.; Jensen, M. P. The Chemistry of the Actinide and Transactinide Elements, Vol. 4; Morss, L. R., Edelstein, N. M., Fuger, N. M., Katz, J. J. Eds.; Springer: Dordrecht, 2008; pp 2524-2621.
-
[14]
(14) Choppin, G. R. J. Radioanal. Nucl. Chem. 2007, 273, 695. doi: 10.1007/s10967-007-0933-3
-
[15]
(15) Colmenares, C. A. Prog. Solid State Chem. 1984, 15, 257. doi: 10.1016/0079-6786(84)90003-7
-
[16]
(16) Barnea, E.; Eisen, M. S. Coord. Chem. Rev. 2006, 250, 855. doi: 10.1016/j.ccr.2005.12.007
-
[17]
(17) de Almeida, K. J.; Cesar, A. Organometallics 2006, 25, 3407. doi: 10.1021/om060112k
-
[18]
(18) Stubbert, B. D.; Marks, T. J. J. Am. Chem. Soc. 2007, 129, 4253. doi: 10.1021/ja0665444
-
[19]
(19) Field, R.W. Ber. Bunsen-Ges. Phys. Chem. 1982, 86, 771. doi: 10.1002/bbpc.19820860903
-
[20]
(20) Demtroder, W. Laser Spectroscopy: Basic Concepts and Instrumentation, 3rd ed.; Springer-Verlag: Berlin, Heidelberg, New York, 2003.
-
[21]
(21) Schlag, E.W. ZEKE Spectroscopy; Cambridge University Press: Cambridge, UK, 1998.
-
[22]
(22) Softley, T. P. Int. Rev. Phys. Chem. 2004, 23, 1. doi: 10.1080/01442350310001652940
-
[23]
(23) Heaven, M. C. Phys. Chem. Chem. Phys. 2006, 8, 4497. doi: 10.1039/b607486c
-
[24]
(24) Schreckenbach, G.; Hay, P. J.; Martin, R. L. J. Comput. Chem. 1999, 20, 70.
-
[25]
(25) Kaltsoyannis, N. Chem. Soc. Rev. 2003, 32, 9. doi: 10.1039/b204253n
-
[26]
(26) Kaltsoyannis, N.; Hay, P. J.; Li, J.; Blaudeau, J. P.; Bursten, B. E. The Chemistry of The Actinide and Transactinide Elements, Vol. 3; Morss, L. R., Edelstein, N. M., Fuger, N. M., Katz, J. J. Eds.; Springer: Dordrecht, The Netherlands, 2008; pp 1893- 2012.
-
[27]
(27) Schreckenbach, G.; Shamov, G. A. Accoutns Chem. Res. 2010, 43, 19. doi: 10.1021/ar800271r
-
[28]
(28) Buehl, M.; Wipff, G. ChemPhysChem 2011, 12, 3095. doi: 10.1002/cphc.201100458
-
[29]
(29) Lan, J. H.; Shi, W. Q.; Yuan, L. Y.; Li, J.; Zhao, Y. L.; Chai, Z. F. Coord. Chem. Rev. 2012, 256, 1406. doi: 10.1016/j.ccr.2012.04.002
-
[30]
(30) D'Angelo, P.; Spezia, R. Chem. -Eur. J. 2012, 18, 11162. doi: 10.1002/chem.v18.36
-
[31]
(31) Wang, D.; van Gunsteren, W. F.; Chai, Z. Chem. Soc. Rev. 2012, 41, 5836. doi: 10.1039/c2cs15354h
-
[32]
(32) Cramer, C. J.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2009, 11, 10757. doi: 10.1039/b907148b
-
[33]
(33) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, 1989.
-
[34]
(34) Dreizler, R. M.; Gross, E. K. U. Density Functional Theory: An Approach to the Quantum Many-Body Problem; Springer-Verlag: Berlin, Heidelberg, 1990.
-
[35]
(35) Chai, J. D.; Head- rdon, M. J. Chem. Phys. 2008, 128, 084106. doi: 10.1063/1.2834918
-
[36]
(36) Yanagisawa, S.; Tsuneda, T.; Hirao, K. J. Chem. Phys. 2000, 112, 545. doi: 10.1063/1.480546
-
[37]
(37) Barden, C. J.; Rienstra-Kiracofe, J. C.; Schaefer, H. F., III. J. Chem. Phys. 2000, 113, 690. doi: 10.1063/1.481916
-
[38]
(38) Gutsev, G. L.; Bauschlicher, C.W., Jr. J. Phys. Chem. A 2003, 107, 4755. doi: 10.1021/jp030146v
-
[39]
(39) Schultz, N. E.; Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2005, 109, 11127. doi: 10.1021/jp0539223
-
[40]
(40) Yang, K.; Zheng, J.; Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2010, 132, 164117. doi: 10.1063/1.3382342
-
[41]
(41) Averkiev, B. B.; Mantina, M.; Valero, R.; Infante, I.; Kovacs, A.; Truhlar, D. G.; Gagliardi, L. Theor. Chem. Acc. 2011, 129, 657. doi: 10.1007/s00214-011-0913-0
-
[42]
(42) erigk, L.; Grimme, S. Phys. Chem. Chem. Phys. 2011, 13, 6670. doi: 10.1039/c0cp02984j
-
[43]
(43) Tecmer, P.; mes, A. S. P.; Ekstroem, U.; Visscher, L. Phys. Chem. Chem. Phys. 2011, 13, 6249. doi: 10.1039/c0cp02534h
-
[44]
(44) Antunes, M. A.; Ferrence, G. M.; Domin s, A.; McDonald, R.; Burns, C. J.; Takats, J.; Marques, N. Inorg. Chem. 2004, 43, 6640. doi: 10.1021/ic049204x
-
[45]
(45) Antunes, M. A.; Domin s, .; dos Santos, I. C.; Marques, N.; Takats, J. Polyhedron 2005, 24, 3038. doi: 10.1016/j.poly.2005.06.025
-
[46]
(46) Korobkov, I.; relsky, S.; Gambarotta, S. J. Am. Chem. Soc. 2009, 131, 10406. doi: 10.1021/ja9002525
-
[47]
(47) Duhovi?, S.; Khan, S.; Diaconescu, P. L. Chem. Commun. 2010, 46, 3390. doi: 10.1039/b927264j
-
[48]
(48) Matson, E. M.; Forrest, W. P.; Fanwick, P. E.; Bart, S. C. J. Am. Chem. Soc. 2011, 133, 4948. doi: 10.1021/ja110158s
-
[49]
(49) Fox, A. R.; Bart, S. C.; Meyer, K.; Cummins, C. C. Nature 2008, 455, 341. doi: 10.1038/nature07372
-
[50]
(50) Arnold, P. L. Chem. Commun. 2011, 47, 9005. doi: 10.1039/c1cc10834d
-
[51]
(51) Castro-Rodriguez, I.; Meyer, K. J. Am. Chem. Soc. 2005, 127, 11242. doi: 10.1021/ja053497r
-
[52]
(52) Lam, O. P.; Bart, S. C.; Kameo, H.; Heinemann, F.W.; Meyer, K. Chem. Commun. 2010, 46, 3137. doi: 10.1039/b927142b
-
[53]
(53) Castro, L.; Lam, O. P.; Bart, S. C.; Meyer, K.; Maron, L. Organometallics 2010, 29, 5504. doi: 10.1021/om100479r
-
[54]
(54) Moloy, K. G.; Marks, T. J. Inorg. Chim. Acta 1985, 110, 127. doi: 10.1016/S0020-1693(00)84568-5
-
[55]
(55) Domin s, A.; Marcalo, J.; Marques, N.; de Matos, A. P. Polyhedron 1992, 11, 501. doi: 10.1016/S0277-5387(00)83295-7
-
[56]
(56) Evans, W. J.; Walensky, J. R.; Ziller, J.W. Organometallics 2010, 29, 945. doi: 10.1021/om901006t
-
[57]
(57) Evans, W. J.; Walensky, J. R.; Ziller, J.W. Inorg. Chem. 2010, 49, 1743. doi: 10.1021/ic902141f
-
[58]
(58) Evans, W. J.; Siladke, N. A.; Ziller, J.W. C. R. Chimie 2010, 13, 775. doi: 10.1016/j.crci.2010.02.003
-
[59]
(59) Bart, S. C.; Anthon, C.; Heinemann, F.W.; Bill, E.; Edelstein, N. M.; Meyer, K. J. Am. Chem. Soc. 2008, 130, 12536. doi: 10.1021/ja804263w
-
[60]
(60) Mansell, S. M.; Kaltsoyannis, N.; Arnold, P. L. J. Am. Chem. Soc. 2011, 133, 9036. doi: 10.1021/ja2019492
-
[61]
(61) Lescop, C.; Arliguie, T.; Lance, M.; Nierlich, M.; Ephritikhine, M. J. Organomet. Chem. 1999, 580, 137. doi: 10.1016/S0022-328X(98)01139-5
-
[62]
(62) Lam, O. P.; Meyer, K. Polyhedron 2012, 32, 1. doi: 10.1016/j.poly.2011.07.015
-
[63]
(63) Matson, E. M.; Fanwick, P. E.; Bart, S. C. Organometallics 2011, 30, 5753. doi: 10.1021/om200612h
-
[64]
(64) Ding, W.; Fang, W.; Chai, Z.; Wang, D. J. Chem. Theory Comput. 2012, 8, 3605. doi: 10.1021/ct300075n
-
[65]
(65) Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098
-
[66]
(66) Perdew, J. P. Phys. Rev. B 1986, 33, 8822. doi: 10.1103/PhysRevB.33.8822
-
[67]
(67) Perdew, J. P. Phys. Rev. B 1986, 34, 7406.
-
[68]
(68) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
-
[69]
(69) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396.
-
[70]
(70) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158. doi: 10.1063/1.478522
-
[71]
(71) Becke, A. D. J. Chem. Phys. 1993, 98, 1372. doi: 10.1063/1.464304
-
[72]
(72) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
-
[73]
(73) Perdew, J. P. Electronic Structure of Solids '91; Ziesche, P., Eschrig, H. Eds.; Akademie Verlag, Berlin, 1991; pp 11-20.
-
[74]
(74) Xu, X.; ddard, W. A., III. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 2673. doi: 10.1073/pnas.0308730100
-
[75]
(75) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51. doi: 10.1016/j.cplett.2004.06.011
-
[76]
(76) Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401. doi: 10.1103/PhysRevLett.91.146401
-
[77]
(77) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101. doi: 10.1063/1.2370993
-
[78]
(78) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x
-
[79]
(79) Keim, W. Pure & Appl. Chem. 1986, 58, 825.
-
[80]
(80) Scuseria, G. E.; Staroverov, V. N. Theory and Application of Computational Chemistry: the First 40 Years; Dykstra, C. E., Frenking, G., Kim, K. S., Scuseria, G. E. Eds.; Elsevier: Amsterdam, 2005; pp 669-724.
-
[81]
(81) Paier, J.; Marsman, M.; Kresse, G. J. Chem. Phys. 2007, 127, 024103. doi: 10.1063/1.2747249
-
[82]
(82) Ahlrichs, R.; Furche, F.; Grimme, S. Chem. Phys. Lett. 2000, 325, 317. doi: 10.1016/S0009-2614(00)00654-0
-
[83]
(83) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200. doi: 10.1139/p80-159
-
[84]
(84) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Guerra, C. F.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931.
-
[85]
(85) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision C.01; Gaussian Inc.:Wallingford, CT, 2009.
-
[86]
(86) TURBOMOLE V6.5 2013, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007. TURBOMOLE GmbH since 2007; available from http://www.turbomole.com.
-
[87]
(87) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200. doi: 10.1016/0009-2614(89)87234-3
-
[88]
(88) de Jong, W. A.; Harrison, R. J.; Nichols, J. A.; Dixon, D. A. Theor. Chem. Acc. 2001, 107, 22. doi: 10.1007/s002140100293
-
[89]
(89) Shamov, G. A.; Schreckenbach, G. J. Phys. Chem. A 2005, 109, 10961. Erratum. J. Phys. Chem. A 2006, 110, 12072. doi: 10.1021/jp053522f
-
[90]
(90) Shamov, G. A.; Schreckenbach, G.; Vo, T. N. Chem. -Eur. J. 2007, 13, 4932.
-
[91]
(91) Odoh, S. O.; Schreckenbach, G. J. Phys. Chem. A 2010, 114, 1957. doi: 10.1021/jp909576w
-
[92]
(92) Odoh, S. O.; Schreckenbach, G. J. Phys. Chem. A 2011, 115, 14110. doi: 10.1021/jp207556b
-
[93]
(93) Odoh, S. O.; Walker, S. M.; Meier, M.; Stetefeld, J.; Schreckenbach, G. Inorg. Chem. 2011, 50, 3141. doi: 10.1021/ic2001706
-
[94]
(94) Lai, W.; Yao, J.; Shaik, S.; Chen, H. J. Chem. Theory Comput. 2012, 8, 2991. doi: 10.1021/ct3005936
-
[95]
(95) Jakobsen, S.; Kristensen, K.; Jensen, F. J. Chem. Theory Comput. 2013, 9, 3978. doi: 10.1021/ct400452f
-
[96]
(96) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2006, 110, 5121. doi: 10.1021/jp060231d
-
[97]
(97) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2006, 110, 13126. doi: 10.1021/jp066479k
-
[98]
(98) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. doi: 10.1063/1.3382344
-
[99]
(99) Vanquickenborne, L. G.; Verhulst, J.; Coussens, B.; Hendrickx, M.; Pierloot, K. J. Mol. Struct. -Theochem 1987, 153, 227. doi: 10.1016/0166-1280(87)80006-4
-
[100]
(100) Banik, N. L.; Schimmelpfennig, B.; Marquardt, C. M.; Brendebach, B.; Geist, A.; Denecke, M. A. Dalton Trans. 2010, 39, 5117. doi: 10.1039/b927016g
-
[101]
(101) Iché-Tarrat, N.; Marsden, C. J. J. Phys. Chem. A 2008, 112, 7632. doi: 10.1021/jp801124u
-
[102]
(102) Migdalek, J.; Baylis, W. E. Can. J. Phys. 1982, 60, 1317. doi: 10.1139/p82-178
-
[103]
(103) Müller, W.; Flesch, J.; Meyer, W. J. Chem. Phys. 1984, 80, 3297. doi: 10.1063/1.447083
-
[104]
(104) Foucrault, M.; Millie, P.; Daudey, J. P. J. Chem. Phys. 1992, 96, 1257.
-
[105]
(105) Moritz, A.; Cao, X.; Dolg, M. Theor. Chem. Acc. 2007, 117, 473. doi: 10.1007/s00214-006-0180-7
-
[106]
(106) Küchle, W.; Dolg, M.; Stoll, H.; Preuss, H. J. Chem. Phys. 1994, 100, 7535. doi: 10.1063/1.466847
-
[107]
(107) Cao, X.; Dolg, M.; Stoll, H. J. Chem. Phys. 2003, 118, 487. doi: 10.1063/1.1521431
-
[108]
(108) Cao, X.; Dolg, M. J. Molec. Struct. -Theochem 2004, 673, 203. doi: 10.1016/j.theochem.2003.12.015
-
[109]
(109) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. doi: 10.1063/1.1677527
-
[110]
(110) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; rdon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654. doi: 10.1063/1.444267
-
[111]
(111) Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571. doi: 10.1063/1.463096
-
[112]
(112) Dolg, M.; Cao, X. J. Phys. Chem. A 2009, 113, 12573. doi: 10.1021/jp9044594
-
[113]
(113) Mayer, I. Int. J. Quantum Chem. 1984, 26, 151.
-
[114]
(114) Pauling, L. Nature of the Chemistry Bond; Cornell University Press: Ithaca, United States, 1960; pp 88-107.
-
[115]
(115) Lide, D. R. CRC Handbook of Chemistry and Physics, Internet Version. http://www.hbcpnetbase.com; CRC Press: Boca Raton, FL, 2005.
-
[116]
(116) Matta, C. F.; Boyd, R. J. The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design; WILEY-VCH:Weinham, 2007.
-
[1]
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[3]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[4]
Hua Hou , Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045
-
[5]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[6]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[7]
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
-
[8]
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
-
[9]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[10]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[11]
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
-
[12]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[13]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[14]
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
-
[15]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[16]
Cunling Ye , Xitong Zhao , Hongfang Wang , Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043
-
[17]
Ping Cai , Yaxian Zhu , Tao Hu . Frontier Research and Basic Theory in the Classroom: an Introduction to the Inorganic Chemistry Teaching Case under the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 84-88. doi: 10.12461/PKU.DXHX202408027
-
[18]
Hongyi Zhang , Zhihong Shi , Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030
-
[19]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[20]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[1]
Metrics
- PDF Downloads(431)
- Abstract views(716)
- HTML views(55)