Citation: BIAN Jiang-Yu, YUE Shu-Mei, ZHANG Min, ZHANG Jing-Ping. Effects of Azido Bridge on Magnetic Properties of Dinuclear Nickel Complexes: Density Functional Theory Studies[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1086-1092. doi: 10.3866/PKU.WHXB201504162 shu

Effects of Azido Bridge on Magnetic Properties of Dinuclear Nickel Complexes: Density Functional Theory Studies

  • Received Date: 15 January 2015
    Available Online: 16 April 2015

    Fund Project: 长春师范学院自然科学基金(长师院自科合字[2009]第009 号, 长师院自科合字政策[2010]第030 号) (长师院自科合字[2009]第009 号, 长师院自科合字政策[2010]第030 号)规划项目(吉教科合字[2011]第192 号)资助 (吉教科合字[2011]第192 号)

  • The magnetic properties of the antiferromagnetic complex μ-1,3-N3-Ni(II)[LNi2(N3)](ClO4)2 (L= pyrazolate) were investigated using density functional theory (DFT) calculations combined with the broken symmetry approach. The calculation results obtained using the hybrid density functional theory (HDFT) agree well with the experimental data, and accurately describe the magnetic properties of complex. The large energy splitting, 0.93-0.99 eV, between singly occupied molecular orbitals indicates that there is strong non-degeneracy between them, and the two coupling paths (azido and pyrazolate) in the complex show that there is overlap between the p orbitals of the N atoms. All these factors contribute to the antiferromagnetism of the complex. The magnetic properties of the complex are also closely related to the dihedral angle τ of Ni-N-N-N-Ni. The antiferromagnetism of the complex increases as τ decreases from -55.38° to -1.5°; the maximum absolute value of magnetic coupling constant (Jab) occurs at -11.95° (Jab=-151.02 cm-1). During this process, the coplanarity of the seven-membered ring, which consists of two Ni(II), one azido, and two bridging nitrogen atoms (N(4) and N(5)), is enhanced, i.e., coplanarity increases the antiferromagnetism of the complex.

  • 加载中
    1. [1]

      (1) Kahn, O. Molecular Magnetism; VCH Publications: New York, 1993.

    2. [2]

      (2) (a) Carroll, R. L.; rman, C. B. Angew. Chem. Int. Edit. 2002, 41, 4378. doi: 10.1002/1521-3773(20021202)41:23<4378::AIDANIE4378> 3.0.CO;2-A

    3. [3]

      (b) Bousseksou, A.; Molnár, G.; Matouzenko, G. Eur. J. Inorg. Chem. 2004, 2004, 4353.

    4. [4]

      (c) Zhang, P.; Zhang, L.; Tang, J. K. Dalton Trans. 2015, 44, 3923.

    5. [5]

      (d) Antonis, N. A.; Zacharias, G. F.; Madhu, M. J. Phys.: Condes. Matter 2015, 27, 052202.

    6. [6]

      (3) (a) Umezono, Y.; Fujita, W.; Awaga, K. J. Am. Chem. Soc. 2006, 128, 1084. doi: 10.1021/ja057207i

    7. [7]

      (b) Jeannin, O.; Clérac, R.; Fourmigué, M. J. Am. Chem. Soc. 2006, 128, 14649.

    8. [8]

      (c) Bréfuel, N.; Shova, S.; Tuchagues, J. P. Eur. J. Inorg. Chem. 2007, 2007, 4326.

    9. [9]

      (d) Koner, R.; Hazra, S.; Fleck, M.; Jana, A.; Lucas, C. R.; Mohanta, S. Eur. J. Inorg. Chem. 2009, 2009, 4982.

    10. [10]

      (4) (a) Delferro, M.; Graiff, C.; Marchiò, L.; Elviri, L.; Mazzani, M.; Riccò, M.; Predieri, G. Eur. J. Inorg. Chem. 2011, 2011, 3327. doi: 10.1002/ejic.201100385

    11. [11]

      (b) Cardona-Serra, S.; Clemente-Juan, J. M.; Coronado, E.; Gaita-Ariño, A.; Suaud, N.; Svoboda, O.; Bastardis, R.; Guihéry, N.; Palacios, J. J. Chem. -Eur. J. 2015, 21, 763.

    12. [12]

      (c) Zhang, Y. Q.; Luo, C. L. Int. J. Quantum Chem. 2006, 106, 1551.

    13. [13]

      (5) (a) Frecus, B.; Oprea, C. I.; Panait, P.; Ferbinteanu, M.; Cimpoesu, F.; Gîr?u, M. A. Theor. Chem. Acc. 2014, 133, 1470. doi: 10.1007/s00214-014-1470-0

    14. [14]

      (b) Guedes, G. P.; Florencio, A. S.; Carneiro, J.W. M.; Vaz, M. G. F. Solid State Sci. 2013, 18, 10.

    15. [15]

      (c) Triki, S.; Gómez-García, C. J.; Ruiz, E.; Sala-Pala, J. Inorg. Chem. 2005, 44, 5501.

    16. [16]

      (d) Jia, L. H.; Liu, A. C.; Mu, Z. E.; Chen, Y. F. Acta Phys. -Chim. Sin. 2011, 27, 1595. [贾丽慧, 刘安昌, 牟宗娥, 陈云峰. 物理化学学报, 2011, 27, 1595]. doi: 10.3866/PKU.WHXB20110736

    17. [17]

      (e) James, M.; Brant, C. Inorg. Chim. Acta 2012, 384, 189.

    18. [18]

      (6) (a) Feng, P. L.; Stephenson, C. J.; Amjad, A.; Ogawa, G.; Barco, E. D.; Hendrickson, D. N. Inorg. Chem. 2010, 49, 1304. doi: 10.1021/ic902298y

    19. [19]

      (b) Milios, C. J.; Inglis, R.; Vinslava, A.; Prescimone, A.; Parsons, S.; Perlepes, S. P.; Christou, G.; Brechin, E. K. Chem. Commun. 2007, 26, 2738.

    20. [20]

      (c) Sun, H. L.; Wang, Z. M.; Gao, S. Chem. -Eur. J. 2009, 15, 1757.

    21. [21]

      (d) Gu, Z. G.; Song, Y.; Zuo, J. L.; You, X. Z. Inorg. Chem. 2007, 46, 9522.

    22. [22]

      (e) Liu, T. F.; Fu, D.; Gao, S.; Zhang, Y. Z.; Sun, H. L.; Su, G.; Liu, Y. J. J. Am. Chem. Soc. 2003, 125, 13976.

    23. [23]

      (7) (a) Sasmal, S.; Hazra, S.; Kundu, P.; Majumder, S.; Aliaga- Alcalde, N.; Ruiz, E.; Mohanta, S. Inorg. Chem. 2010, 49, 9517. doi: 10.1021/ic101209m

    24. [24]

      (b) Demeshko, S.; Leibeling, G.; Dechert, S.; Meyer, F. Dalton Trans. 2006, 28, 3458.

    25. [25]

      (c) Mukherjee, P. S.; Maji, T. K.; Escuer, A.; Vicente, R.; Ribas, J.; Rosair, G.; Mautner, F. A.; Chaudhuri, N. R. Eur. J. Inorg. Chem. 2002, 2002, 943.

    26. [26]

      (8) (a) Milios, C. J.; Prescimone, A.; Sanchez-Benitez, J.; Parsons, S.; Murrie, M.; Brechin, E. K. Inorg. Chem. 2006, 45, 7053. doi: 10.1021/ic061035o

    27. [27]

      (b) Tandon, S. S.; Bunge, S. D.; Sanchiz, J.; Thompson, L. K. Inorg. Chem. 2012, 51, 3270.

    28. [28]

      (9) (a) Leibeling, G.; Demeshko, S.; Dechert, S.; Meyer, F. Angew. Chem. Int. Edit. 2005, 44, 7111.

    29. [29]

      (b) Demeshko, S.; Leibeling, G.; Maringgele, W.; Meyer, F.; Mennerich, C.; Klauss, H. H.; Pritzkow, H. Inorg. Chem. 2005, 44, 519.

    30. [30]

      (10) (a) Papaefstathiou, G. S.; Escuer, A.; Vicente, R.; Font-Bardia, M.; Solans, X.; Perlepes, S. P. Chem. Commun. 2001, 23, 2414.

    31. [31]

      (b) Meyer, F.; Kircher, P.; Pritzkow, H. Chem. Commun. 2003, 6, 774.

    32. [32]

      (c) Zhang, X. M.; Wang, Y. Q.; Song, Y.; Gao, E. Q. Inorg. Chem. 2011, 50, 7284.

    33. [33]

      (d) Brunet, G.; Habib, F.; Cook, C.; Pathmalingam, T.; Loiseau, F.; Korobkov, I.; Burchell, T. J.; Beauchemin, A. M.; Murugesu, M. Chem. Commun. 2012, 48, 1287.

    34. [34]

      (e) Sengupta, O.; Mukherjee, P. S. Inorg. Chem. 2010, 49, 8583.

    35. [35]

      (f) Lin, S. Y.; Zhao, L.; Guo, Y. N.; Zhang, P.; Guo, Y.; Tang, J. K. Inorg. Chem. 2012, 51, 10522.

    36. [36]

      (11) Chakraborty, A.; Rao, L. S.; Manna, A. K.; Pati, S. K.; Ribas, J.; Maji, T. K. Dalton Trans. 2013, 42, 10707. doi: 10.1039/c3dt32526a

    37. [37]

      (12) (a) Mukherjee, S.; Mukherjee, P. S. Dalton Trans. 2013, 42, 4019. doi: 10.1039/c2dt32802j

    38. [38]

      (b) Mukherjee, S.; Mukherjee, P. S. Accounts Chem. Res. 2013, 46, 2556.

    39. [39]

      (c) Mukherjee, S.; Mukherjee, P. S. Cryst. Growth Des. 2014, 14, 4177.

    40. [40]

      (13) (a) Bian, J. Y.; Chang, Y. F.; Zhang, J. P. J. Phys. Chem. A 2008, 112, 3186. doi: 10.1021/jp711121z

    41. [41]

      (b) Noh, E. A. A.; Zhang, J. P. Chem. Phys. 2006, 330, 82.

    42. [42]

      (c) Noh, E. A. A.; Zhang, J. P. Theochem 2009, 896, 54.

    43. [43]

      (d) Noh, E. A. A.; Zhang, J. P. Theochem 2008, 867, 33.

    44. [44]

      (14) (a) Clarke, C. S.; Jornet-Somoza, J.; Mota, F.; Novoa, J. J.; Deumal, M. J. Am. Chem. Soc. 2010, 132, 17817. doi: 10.1021/ja1057746

    45. [45]

      (b) Onofrio, N.; Mouesca, J. M. Inorg. Chem. 2011, 50, 5577.

    46. [46]

      (c) Sasmal, S.; Hazra, S.; Kundu, P.; Dutta, S.; Rajaraman, G.; Sañudo, E. C.; Mohanta, S. Inorg. Chem. 2011, 50, 7257.

    47. [47]

      (d) Biswas, R.; Mukherjee, S.; Kar, P.; Ghosh, A. Inorg. Chem. 2012, 51, 8150.

    48. [48]

      (e) Pramanik, K.; Malpaharia, P.; Mota, A. J.; Colacio, E.; Das, B.; Lloret, F.; Chandra, S. K. Inorg. Chem. 2013, 52, 3995.

    49. [49]

      (15) Leibeling, G.; Demeshko, S.; Bauer-Siebenlist, B.; Mayer, F.; Pritzkow, H. Eur. J. Inorg. Chem. 2004, 2004, 2413.

    50. [50]

      (16) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B. et al. Gaussian 03, Revision C.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    51. [51]

      (17) (a) Yin, B.; Li, J. L.; Bai, H. C.; Wen, Z. Y.; Jiang, Z. Y.; Huang, Y. H. Phys. Chem. Chem. Phys. 2012, 14, 1121. doi: 10.1039/C1CP22928A

    52. [52]

      (b) Yu, Y.; Li, C.; Yin, B.; Li, L. J.; Huang, Y. H.; Wen, Z. Y.; Jiang, Z. Y. J. Chem. Phys. 2013, 139, 054305.

    53. [53]

      (18) Ruiz, E.; Cirera, J.; Alvarez, S. Coord. Chem. Rev. 2005, 249, 2649. doi: 10.1016/j.ccr.2005.04.010

    54. [54]

      (19) Cano, J.; Ruiz, E.; Alvarez, S.; Verdaguer, M. Comments Inorg. Chem. 1998, 20, 27. doi: 10.1080/02603599808032749

    55. [55]

      (20) Mitani, M.; Mori, H.; Takano, Y.; Yamaki, D.; Yoshioka, Y.; Yamaguchi, K. J. Chem. Phys. 2000, 113, 4035. doi: 10.1063/1.1286418

    56. [56]

      (21) (a)Willet, R. D.; Gatteschi, D.; Kahn, O. Magneto-Structural Correlations in Exchange Coupled Systems; Reidel: Dordrecht, 1985.

    57. [57]

      (b) O'Connor, C. J. Research Frontiers in Magnetochemistry; World Scientific: Singapore, 1993.

    58. [58]

      (c) Chen, C. T.; Suslick, K. S. Coord. Chem. Rev. 1993, 128, 293.

    59. [59]

      (22) (a) Koner, R.; Lin, H. H.; Wei, H. H.; Mohanta, S. Inorg. Chem. 2005, 44, 3524. doi: 10.1021/ic048196h

    60. [60]

      (b) Nanda, K. K.; Thompson, L. K.; Bridson, J. N.; Nag, K. J. Chem. Soc. Chem. Commun. 1994, 11, 1337.

    61. [61]

      (c) Arriortua, M. I.; Cortés, R.; Mesa, J. L.; Lezama, L.; Rojo, T.; Villeneuve, G. Transition Met. Chem. 1988, 13, 371.


  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    3. [3]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    4. [4]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    5. [5]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    6. [6]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    7. [7]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    10. [10]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    13. [13]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    14. [14]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    15. [15]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    16. [16]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

Metrics
  • PDF Downloads(295)
  • Abstract views(783)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return