Citation:
BIAN Jiang-Yu, YUE Shu-Mei, ZHANG Min, ZHANG Jing-Ping. Effects of Azido Bridge on Magnetic Properties of Dinuclear Nickel Complexes: Density Functional Theory Studies[J]. Acta Physico-Chimica Sinica,
;2015, 31(6): 1086-1092.
doi:
10.3866/PKU.WHXB201504162
-
The magnetic properties of the antiferromagnetic complex μ-1,3-N3-Ni(II)[LNi2(N3)](ClO4)2 (L= pyrazolate) were investigated using density functional theory (DFT) calculations combined with the broken symmetry approach. The calculation results obtained using the hybrid density functional theory (HDFT) agree well with the experimental data, and accurately describe the magnetic properties of complex. The large energy splitting, 0.93-0.99 eV, between singly occupied molecular orbitals indicates that there is strong non-degeneracy between them, and the two coupling paths (azido and pyrazolate) in the complex show that there is overlap between the p orbitals of the N atoms. All these factors contribute to the antiferromagnetism of the complex. The magnetic properties of the complex are also closely related to the dihedral angle τ of Ni-N-N-N-Ni. The antiferromagnetism of the complex increases as τ decreases from -55.38° to -1.5°; the maximum absolute value of magnetic coupling constant (Jab) occurs at -11.95° (Jab=-151.02 cm-1). During this process, the coplanarity of the seven-membered ring, which consists of two Ni(II), one azido, and two bridging nitrogen atoms (N(4) and N(5)), is enhanced, i.e., coplanarity increases the antiferromagnetism of the complex.
-
-
-
[1]
(1) Kahn, O. Molecular Magnetism; VCH Publications: New York, 1993.
-
[2]
(2) (a) Carroll, R. L.; rman, C. B. Angew. Chem. Int. Edit. 2002, 41, 4378. doi: 10.1002/1521-3773(20021202)41:23<4378::AIDANIE4378> 3.0.CO;2-A
-
[3]
(b) Bousseksou, A.; Molnár, G.; Matouzenko, G. Eur. J. Inorg. Chem. 2004, 2004, 4353.
-
[4]
(c) Zhang, P.; Zhang, L.; Tang, J. K. Dalton Trans. 2015, 44, 3923.
-
[5]
(d) Antonis, N. A.; Zacharias, G. F.; Madhu, M. J. Phys.: Condes. Matter 2015, 27, 052202.
-
[6]
(3) (a) Umezono, Y.; Fujita, W.; Awaga, K. J. Am. Chem. Soc. 2006, 128, 1084. doi: 10.1021/ja057207i
-
[7]
(b) Jeannin, O.; Clérac, R.; Fourmigué, M. J. Am. Chem. Soc. 2006, 128, 14649.
-
[8]
(c) Bréfuel, N.; Shova, S.; Tuchagues, J. P. Eur. J. Inorg. Chem. 2007, 2007, 4326.
-
[9]
(d) Koner, R.; Hazra, S.; Fleck, M.; Jana, A.; Lucas, C. R.; Mohanta, S. Eur. J. Inorg. Chem. 2009, 2009, 4982.
-
[10]
(4) (a) Delferro, M.; Graiff, C.; Marchiò, L.; Elviri, L.; Mazzani, M.; Riccò, M.; Predieri, G. Eur. J. Inorg. Chem. 2011, 2011, 3327. doi: 10.1002/ejic.201100385
-
[11]
(b) Cardona-Serra, S.; Clemente-Juan, J. M.; Coronado, E.; Gaita-Ariño, A.; Suaud, N.; Svoboda, O.; Bastardis, R.; Guihéry, N.; Palacios, J. J. Chem. -Eur. J. 2015, 21, 763.
-
[12]
(c) Zhang, Y. Q.; Luo, C. L. Int. J. Quantum Chem. 2006, 106, 1551.
-
[13]
(5) (a) Frecus, B.; Oprea, C. I.; Panait, P.; Ferbinteanu, M.; Cimpoesu, F.; Gîr?u, M. A. Theor. Chem. Acc. 2014, 133, 1470. doi: 10.1007/s00214-014-1470-0
-
[14]
(b) Guedes, G. P.; Florencio, A. S.; Carneiro, J.W. M.; Vaz, M. G. F. Solid State Sci. 2013, 18, 10.
-
[15]
(c) Triki, S.; Gómez-García, C. J.; Ruiz, E.; Sala-Pala, J. Inorg. Chem. 2005, 44, 5501.
-
[16]
(d) Jia, L. H.; Liu, A. C.; Mu, Z. E.; Chen, Y. F. Acta Phys. -Chim. Sin. 2011, 27, 1595. [贾丽慧, 刘安昌, 牟宗娥, 陈云峰. 物理化学学报, 2011, 27, 1595]. doi: 10.3866/PKU.WHXB20110736
-
[17]
(e) James, M.; Brant, C. Inorg. Chim. Acta 2012, 384, 189.
-
[18]
(6) (a) Feng, P. L.; Stephenson, C. J.; Amjad, A.; Ogawa, G.; Barco, E. D.; Hendrickson, D. N. Inorg. Chem. 2010, 49, 1304. doi: 10.1021/ic902298y
-
[19]
(b) Milios, C. J.; Inglis, R.; Vinslava, A.; Prescimone, A.; Parsons, S.; Perlepes, S. P.; Christou, G.; Brechin, E. K. Chem. Commun. 2007, 26, 2738.
-
[20]
(c) Sun, H. L.; Wang, Z. M.; Gao, S. Chem. -Eur. J. 2009, 15, 1757.
-
[21]
(d) Gu, Z. G.; Song, Y.; Zuo, J. L.; You, X. Z. Inorg. Chem. 2007, 46, 9522.
-
[22]
(e) Liu, T. F.; Fu, D.; Gao, S.; Zhang, Y. Z.; Sun, H. L.; Su, G.; Liu, Y. J. J. Am. Chem. Soc. 2003, 125, 13976.
-
[23]
(7) (a) Sasmal, S.; Hazra, S.; Kundu, P.; Majumder, S.; Aliaga- Alcalde, N.; Ruiz, E.; Mohanta, S. Inorg. Chem. 2010, 49, 9517. doi: 10.1021/ic101209m
-
[24]
(b) Demeshko, S.; Leibeling, G.; Dechert, S.; Meyer, F. Dalton Trans. 2006, 28, 3458.
-
[25]
(c) Mukherjee, P. S.; Maji, T. K.; Escuer, A.; Vicente, R.; Ribas, J.; Rosair, G.; Mautner, F. A.; Chaudhuri, N. R. Eur. J. Inorg. Chem. 2002, 2002, 943.
-
[26]
(8) (a) Milios, C. J.; Prescimone, A.; Sanchez-Benitez, J.; Parsons, S.; Murrie, M.; Brechin, E. K. Inorg. Chem. 2006, 45, 7053. doi: 10.1021/ic061035o
-
[27]
(b) Tandon, S. S.; Bunge, S. D.; Sanchiz, J.; Thompson, L. K. Inorg. Chem. 2012, 51, 3270.
-
[28]
(9) (a) Leibeling, G.; Demeshko, S.; Dechert, S.; Meyer, F. Angew. Chem. Int. Edit. 2005, 44, 7111.
-
[29]
(b) Demeshko, S.; Leibeling, G.; Maringgele, W.; Meyer, F.; Mennerich, C.; Klauss, H. H.; Pritzkow, H. Inorg. Chem. 2005, 44, 519.
-
[30]
(10) (a) Papaefstathiou, G. S.; Escuer, A.; Vicente, R.; Font-Bardia, M.; Solans, X.; Perlepes, S. P. Chem. Commun. 2001, 23, 2414.
-
[31]
(b) Meyer, F.; Kircher, P.; Pritzkow, H. Chem. Commun. 2003, 6, 774.
-
[32]
(c) Zhang, X. M.; Wang, Y. Q.; Song, Y.; Gao, E. Q. Inorg. Chem. 2011, 50, 7284.
-
[33]
(d) Brunet, G.; Habib, F.; Cook, C.; Pathmalingam, T.; Loiseau, F.; Korobkov, I.; Burchell, T. J.; Beauchemin, A. M.; Murugesu, M. Chem. Commun. 2012, 48, 1287.
-
[34]
(e) Sengupta, O.; Mukherjee, P. S. Inorg. Chem. 2010, 49, 8583.
-
[35]
(f) Lin, S. Y.; Zhao, L.; Guo, Y. N.; Zhang, P.; Guo, Y.; Tang, J. K. Inorg. Chem. 2012, 51, 10522.
-
[36]
(11) Chakraborty, A.; Rao, L. S.; Manna, A. K.; Pati, S. K.; Ribas, J.; Maji, T. K. Dalton Trans. 2013, 42, 10707. doi: 10.1039/c3dt32526a
-
[37]
(12) (a) Mukherjee, S.; Mukherjee, P. S. Dalton Trans. 2013, 42, 4019. doi: 10.1039/c2dt32802j
-
[38]
(b) Mukherjee, S.; Mukherjee, P. S. Accounts Chem. Res. 2013, 46, 2556.
-
[39]
(c) Mukherjee, S.; Mukherjee, P. S. Cryst. Growth Des. 2014, 14, 4177.
-
[40]
(13) (a) Bian, J. Y.; Chang, Y. F.; Zhang, J. P. J. Phys. Chem. A 2008, 112, 3186. doi: 10.1021/jp711121z
-
[41]
(b) Noh, E. A. A.; Zhang, J. P. Chem. Phys. 2006, 330, 82.
-
[42]
(c) Noh, E. A. A.; Zhang, J. P. Theochem 2009, 896, 54.
-
[43]
(d) Noh, E. A. A.; Zhang, J. P. Theochem 2008, 867, 33.
-
[44]
(14) (a) Clarke, C. S.; Jornet-Somoza, J.; Mota, F.; Novoa, J. J.; Deumal, M. J. Am. Chem. Soc. 2010, 132, 17817. doi: 10.1021/ja1057746
-
[45]
(b) Onofrio, N.; Mouesca, J. M. Inorg. Chem. 2011, 50, 5577.
-
[46]
(c) Sasmal, S.; Hazra, S.; Kundu, P.; Dutta, S.; Rajaraman, G.; Sañudo, E. C.; Mohanta, S. Inorg. Chem. 2011, 50, 7257.
-
[47]
(d) Biswas, R.; Mukherjee, S.; Kar, P.; Ghosh, A. Inorg. Chem. 2012, 51, 8150.
-
[48]
(e) Pramanik, K.; Malpaharia, P.; Mota, A. J.; Colacio, E.; Das, B.; Lloret, F.; Chandra, S. K. Inorg. Chem. 2013, 52, 3995.
-
[49]
(15) Leibeling, G.; Demeshko, S.; Bauer-Siebenlist, B.; Mayer, F.; Pritzkow, H. Eur. J. Inorg. Chem. 2004, 2004, 2413.
-
[50]
(16) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B. et al. Gaussian 03, Revision C.01; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[51]
(17) (a) Yin, B.; Li, J. L.; Bai, H. C.; Wen, Z. Y.; Jiang, Z. Y.; Huang, Y. H. Phys. Chem. Chem. Phys. 2012, 14, 1121. doi: 10.1039/C1CP22928A
-
[52]
(b) Yu, Y.; Li, C.; Yin, B.; Li, L. J.; Huang, Y. H.; Wen, Z. Y.; Jiang, Z. Y. J. Chem. Phys. 2013, 139, 054305.
-
[53]
(18) Ruiz, E.; Cirera, J.; Alvarez, S. Coord. Chem. Rev. 2005, 249, 2649. doi: 10.1016/j.ccr.2005.04.010
-
[54]
(19) Cano, J.; Ruiz, E.; Alvarez, S.; Verdaguer, M. Comments Inorg. Chem. 1998, 20, 27. doi: 10.1080/02603599808032749
-
[55]
(20) Mitani, M.; Mori, H.; Takano, Y.; Yamaki, D.; Yoshioka, Y.; Yamaguchi, K. J. Chem. Phys. 2000, 113, 4035. doi: 10.1063/1.1286418
-
[56]
(21) (a)Willet, R. D.; Gatteschi, D.; Kahn, O. Magneto-Structural Correlations in Exchange Coupled Systems; Reidel: Dordrecht, 1985.
-
[57]
(b) O'Connor, C. J. Research Frontiers in Magnetochemistry; World Scientific: Singapore, 1993.
-
[58]
(c) Chen, C. T.; Suslick, K. S. Coord. Chem. Rev. 1993, 128, 293.
-
[59]
(22) (a) Koner, R.; Lin, H. H.; Wei, H. H.; Mohanta, S. Inorg. Chem. 2005, 44, 3524. doi: 10.1021/ic048196h
-
[60]
(b) Nanda, K. K.; Thompson, L. K.; Bridson, J. N.; Nag, K. J. Chem. Soc. Chem. Commun. 1994, 11, 1337.
-
[61]
(c) Arriortua, M. I.; Cortés, R.; Mesa, J. L.; Lezama, L.; Rojo, T.; Villeneuve, G. Transition Met. Chem. 1988, 13, 371.
-
[1]
-
-
-
[1]
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
-
[2]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[3]
Qingjun PAN , Zhongliang GONG , Yuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365
-
[4]
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
-
[5]
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
-
[6]
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
-
[7]
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
-
[8]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[9]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[10]
Tingyu Zhu , Hui Zhang , Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011
-
[11]
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
-
[12]
Qilu DU , Li ZHAO , Peng NIE , Bo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006
-
[13]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[14]
Wei Li , Ze Chang , Meihui Yu , Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004
-
[15]
Ji Qi , Jianan Zhu , Yanxu Zhang , Jiahao Yang , Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050
-
[16]
Cunling Ye , Xitong Zhao , Hongfang Wang , Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043
-
[17]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[18]
Wenjing ZHANG , Xiaoqing WANG , Zhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254
-
[19]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[20]
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
-
[1]
Metrics
- PDF Downloads(295)
- Abstract views(783)
- HTML views(38)