Citation: ZHANG Jun-Wei, ZHOU Jun-Gang, Lü Hong, HUANG Qiang. Molecular Dynamics Simulation of Active-Sites of Retaining and Inverting β-Xylosidases[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1169-1178. doi: 10.3866/PKU.WHXB201504151 shu

Molecular Dynamics Simulation of Active-Sites of Retaining and Inverting β-Xylosidases

  • Received Date: 16 February 2015
    Available Online: 15 April 2015

    Fund Project: 上海市自然科学基金(13ZR1402400) (13ZR1402400)国家自然科学基金(31200022)资助项目 (31200022)

  • Xylans are important as potential renewable energy sources. In recent years, there has therefore been interest in improving their degradation efficiencies. β-Xylosidases are key enzymes for xylan degradation; these enzymes are classified, based on their hydrolysis mechanisms, as retaining or inverting enzymes. Although much research has been devoted to understanding retaining and inverting mechanisms, little is known about their differences in solution. We used molecular dynamics (MD) simulations with explicit solvent representation to study the dynamic behaviors of the active-sites of four typical β-xylosidases by analyzing the distances between two catalytic amino acids and the pKa values of proton-donor amino acids. The results show that the distance between the catalytic amino acids with inverting enzymes is about 0.8-1.0 nm, which is greater than that for retaining enzymes, i.e., 0.5-0.6 nm. This is consistent with previous results based on the crystal structures of glycosidases. We found that the pKa of the retaining proton donors are modulated by interactions with neighboring amino acids, enabling switching between low and high values. Such a pKa switch is needed for the double-displacement mechanism of retaining enzymes. In contrast, inverting proton donors, modulated by interactions with neighboring glutamic acids, have only high pKa values. This may be important in proton capture from the solvent by donors, and may facilitate the single-displacement mechanism of inverting enzymes. This study provides new insights into the hydrolysis mechanisms of β-xylosidases, and will therefore be useful in improving the efficiency and applications of β-xylosidases.

  • 加载中
    1. [1]

      (1) Himmel, M. E.; Ding, S. Y.; Johnson, D. K.; Adney, W. S.; Nimlos, M. R.; Brady, J.W.; Foust, T. D. Science 2007, 315 (5813), 804. doi: 10.1126/science.1137016

    2. [2]

      (2) Dionisi, D.; Anderson, J. A.; Aulenta, F.; McCue, A.; Paton, G. J. Chem. Technol. Biotechol. 2014, 90 (3), 366. doi: 10.1002/jctb.4544

    3. [3]

      (3) Shallom, D.; Shoham, Y. Curr. Opin. Microbiol. 2003, 6 (3), 219. doi: 10.1016/s1369-5274(03)00056-0

    4. [4]

      (4) Lorenz, W.W.; Wiegel, J. J. Bacteriol. 1997, 179 (17), 5436.

    5. [5]

      (5) Minic, Z.; Rihouey, C.; Do, C. T.; Lerouge, P.; Jouanin, L. Plant. Physiol. 2004, 135 (2), 867. doi: 10.1104/pp.104.041269

    6. [6]

      (6) Sunna, A.; Antranikian, G. Crit. Rev. Biotechnol. 1997, 17 (1), 39. doi: 10.3109/07388559709146606

    7. [7]

      (7) Knob, A.; Terrasan, C. R. F.; Carmona, E. C. World. J. Microb. Biot. 2010, 26 (3), 389. doi: 10.1007/s11274-009-0190-4

    8. [8]

      (8) Davies, G.; Henrissat, B. Structure 1995, 3 (9), 853. doi: 10.1016/S0969-2126(01)00220-9

    9. [9]

      (9) Rye, C. S.; Withers, S. G. Curr. Opin. Chem. Biol. 2000, 4 (5), 573. doi: 10.1016/S1367-5931(00)00135-6

    10. [10]

      (10) White, A.; Rose, D. R. Curr. Opin. Struc. Biol. 1997, 7 (5), 645. doi: 10.1016/s0959-440x(97)80073-5

    11. [11]

      (11) Barker, I. J.; Petersen, L.; Reilly, P. J. J. Phys. Chem. B 2010, 114 (46), 15389. doi: 10.1021/jp107886e

    12. [12]

      (12) Jordan, D. B.; Wagschal, K.; Gri rescu, A. A.; Braker, J. D. Appl. Microbiol. Biotechnol. 2013, 97 (10), 4415. doi: 10.1007/s00253-012-4475-4

    13. [13]

      (13) Vasella, A.; Davies, G. J.; Bohm, M. Curr. Opin. Chem. Biol. 2002, 6 (5), 619. doi: 10.1016/s1367-5931(02)00380-0

    14. [14]

      (14) Mccarter, J. D.; Withers, S. G. Curr. Opin. Struc. Biol. 1994, 4 (6), 885. doi: 10.1016/0959-440x(94)90271-2

    15. [15]

      (15) Zechel, D. L.; Withers, S. G. Curr. Opin. Chem. Biol. 2001, 5 (6), 643. doi: 10.1016/s1367-5931(01)00260-5

    16. [16]

      (16) Ludwiczek, M. L.; D'Angelo, I.; Yalloway, G. N.; Brockerman, J. A.; Okon, M.; Nielsen, J. E.; Strynadka, N. C. J.; Withers, S. G.; McIntosh, L. P. Biochemistry 2013, 52 (18), 3138. doi: 10.1021/bi400034m

    17. [17]

      (17) Dong, X. Y.; Du, W. J.; Liu, F. F. Acta Phys. -Chim. Sin. 2012, 28, 2735. [董晓燕, 都文婕, 刘夫锋. 物理化学学报, 2012, 28, 2735.] doi: 10.3866/pku.whxb201207162

    18. [18]

      (18) Dror, R. O.; Dirks, R. M.; Grossman, J. P.; Xu, H. F.; Shaw, D. E. Ann. Rev. Biophys. 2012, 41, 429. doi: 10.1146/annurevbiophys-042910-155245

    19. [19]

      (19) Yang, J. K.; Yoon, H. J.; Ahn, H. J.; Lee, B. I.; Pedelacq, J. D.; Liong, E. C.; Berendzen, J.; Laivenieks, M.; Vieille, C.; Zeikus, G. J.; Vocadlo, D. J.; Withers, S. G.; Suh, S.W. J. Mol. Biol. 2004, 335 (1), 155. doi: 10.1016/j.jmb.2003.10.026

    20. [20]

      (20) Santos, C. R.; Polo, C. C.; Correa, J. M.; Simao, R. D. G.; Seixas, F. A. V.; Murakami, M. T. Acta Crystallogra. D-Biol. Crystallogr. 2012, 68 (Suppl. 10), 1339. doi: 10.1107/s0907444912028491

    21. [21]

      (21) Brux, C.; Ben-David, A.; Shallom-Shezifi, D.; Leon, M.; Niefind, K.; Shoham, G.; Shoham, Y.; Schomburg, D. J. Mol. Biol. 2006, 359 (1), 97. doi: 10.1016/j.jmb.2006.03.005

    22. [22]

      (22) Brunzelle, J. S.; Jordan, D. B.; McCaslin, D. R.; Olczak, A.; Wawrzak, Z. Arch. Biochem. Biophys. 2008, 474 (1), 157. doi: 10.1016/j.abb.2008.03.007

    23. [23]

      (23) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4 (3), 435. doi: 10.1021/ct700301q

    24. [24]

      (24) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Proteins 2006, 65 (3), 712. doi: 10.1002/prot.21123

    25. [25]

      (25) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79 (2), 926. doi: 10.1063/1.445869

    26. [26]

      (26) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98 (12), 10089. doi: 10.1063/1.464397

    27. [27]

      (27) Berendsen, H. J. C.; Postma, J. P. M.; Vangunsteren, W. F.; Dinola, A.; Haak, J. R. J. Chem. Phys. 1984, 81 (8), 3684. doi: 10.1063/1.448118

    28. [28]

      (28) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. Model. 1996, 14 (1), 33. doi: 10.1016/0263-7855(96)00018-5

    29. [29]

      (29) Delano, W. L. The PyMOL Molecular Graphics System; Delano Scientific: San Carlos, CA, 2002.

    30. [30]

      (30) Mhlon , N. N.; Skelton, A. A.; Kruger, G.; Soliman, M. E. S.; Williams, I. H. Proteins 2014, 82 (9), 1747. doi: 10.1002/prot.24528

    31. [31]

      (31) Mohamed, I. P. K.; Subramani, K. Acta Phys. -Chim. Sin. 2009, 25, 2357. [Mohamed, I. P. K., Subramani, K. 物理化学学报, 2009, 25, 2357.] doi: 10.3866/PKU.WHXB20091131

    32. [32]

      (32) Huang, Q.; Opitz, R.; Knapp, E.W.; Herrmann, A. Biophys. J. 2002, 82 (2), 1050.

    33. [33]

      (33) Sondergaard, C. R.; Olsson, M. H. M.; Rostkowski, M.; Jensen, J. H. J. Chem. Theory Comput. 2011, 7 (7), 2284. doi: 10.1021/ct200133y

    34. [34]

      (34) Seeber, M.; Cecchini, M.; Rao, F.; Settanni, G.; Caflisch, A. Bioinformatics 2007, 23 (19), 2625. doi: 10.1093/bioinformatics/btm378

    35. [35]

      (35) Saha, B. C. J. Ind. Microbiol. Biot. 2001, 27 (4), 241. doi: 10.1038/sj.jim.7000184

    36. [36]

      (36) Chavez, R.; Bull, P.; Eyzaguirre, J. J. Biotechnol. 2006, 123 (4), 413. doi: 10.1016/j.jbiotec.2005.12.036

    37. [37]

      (37) Eswar, N.; Eramian, D.; Webb, B.; Shen, M. Y.; Sali, A. Protein Structure Modeling with MODELLER; Humana Press: New York, 2008.

    38. [38]

      (38) Kirschner, K. N.; Yongye, A. B.; Tschampel, S. M.; nzalez- Outeirino, J.; Daniels, C. R.; Foley, B. L.; Woods, R. J. J. Comput. Chem. 2008, 29 (4), 622. doi: 10.1002/jcc.20820

    39. [39]

      (39) Shallom, D.; Leon, M.; Bravman, T.; Ben-David, A.; Zaide, G.; Belakhov, V.; Shoham, G.; Schomburg, D.; Baasov, T.; Shoham, Y. Biochemistry 2005, 44 (1), 387. doi: 10.1021/bi048059w

    40. [40]

      (40) Yu, H. B.; Griffiths, T. M. Phys. Chem. Chem. Phys. 2014, 16 (12), 5785. doi: 10.1039/c4cp00351a


  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    3. [3]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    4. [4]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    5. [5]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    8. [8]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    9. [9]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    10. [10]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    11. [11]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    12. [12]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    13. [13]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    14. [14]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    17. [17]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    18. [18]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    19. [19]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    20. [20]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

Metrics
  • PDF Downloads(289)
  • Abstract views(720)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return