Citation:
ZHANG Jun-Wei, ZHOU Jun-Gang, Lü Hong, HUANG Qiang. Molecular Dynamics Simulation of Active-Sites of Retaining and Inverting β-Xylosidases[J]. Acta Physico-Chimica Sinica,
;2015, 31(6): 1169-1178.
doi:
10.3866/PKU.WHXB201504151
-
Xylans are important as potential renewable energy sources. In recent years, there has therefore been interest in improving their degradation efficiencies. β-Xylosidases are key enzymes for xylan degradation; these enzymes are classified, based on their hydrolysis mechanisms, as retaining or inverting enzymes. Although much research has been devoted to understanding retaining and inverting mechanisms, little is known about their differences in solution. We used molecular dynamics (MD) simulations with explicit solvent representation to study the dynamic behaviors of the active-sites of four typical β-xylosidases by analyzing the distances between two catalytic amino acids and the pKa values of proton-donor amino acids. The results show that the distance between the catalytic amino acids with inverting enzymes is about 0.8-1.0 nm, which is greater than that for retaining enzymes, i.e., 0.5-0.6 nm. This is consistent with previous results based on the crystal structures of glycosidases. We found that the pKa of the retaining proton donors are modulated by interactions with neighboring amino acids, enabling switching between low and high values. Such a pKa switch is needed for the double-displacement mechanism of retaining enzymes. In contrast, inverting proton donors, modulated by interactions with neighboring glutamic acids, have only high pKa values. This may be important in proton capture from the solvent by donors, and may facilitate the single-displacement mechanism of inverting enzymes. This study provides new insights into the hydrolysis mechanisms of β-xylosidases, and will therefore be useful in improving the efficiency and applications of β-xylosidases.
-
Keywords:
-
β-Xylosidase
, - Catalytic mechanism,
- Molecular modelling,
- Proton donor,
- pKa value
-
-
-
-
[1]
(1) Himmel, M. E.; Ding, S. Y.; Johnson, D. K.; Adney, W. S.; Nimlos, M. R.; Brady, J.W.; Foust, T. D. Science 2007, 315 (5813), 804. doi: 10.1126/science.1137016
-
[2]
(2) Dionisi, D.; Anderson, J. A.; Aulenta, F.; McCue, A.; Paton, G. J. Chem. Technol. Biotechol. 2014, 90 (3), 366. doi: 10.1002/jctb.4544
-
[3]
(3) Shallom, D.; Shoham, Y. Curr. Opin. Microbiol. 2003, 6 (3), 219. doi: 10.1016/s1369-5274(03)00056-0
-
[4]
(4) Lorenz, W.W.; Wiegel, J. J. Bacteriol. 1997, 179 (17), 5436.
-
[5]
(5) Minic, Z.; Rihouey, C.; Do, C. T.; Lerouge, P.; Jouanin, L. Plant. Physiol. 2004, 135 (2), 867. doi: 10.1104/pp.104.041269
-
[6]
(6) Sunna, A.; Antranikian, G. Crit. Rev. Biotechnol. 1997, 17 (1), 39. doi: 10.3109/07388559709146606
-
[7]
(7) Knob, A.; Terrasan, C. R. F.; Carmona, E. C. World. J. Microb. Biot. 2010, 26 (3), 389. doi: 10.1007/s11274-009-0190-4
-
[8]
(8) Davies, G.; Henrissat, B. Structure 1995, 3 (9), 853. doi: 10.1016/S0969-2126(01)00220-9
-
[9]
(9) Rye, C. S.; Withers, S. G. Curr. Opin. Chem. Biol. 2000, 4 (5), 573. doi: 10.1016/S1367-5931(00)00135-6
-
[10]
(10) White, A.; Rose, D. R. Curr. Opin. Struc. Biol. 1997, 7 (5), 645. doi: 10.1016/s0959-440x(97)80073-5
-
[11]
(11) Barker, I. J.; Petersen, L.; Reilly, P. J. J. Phys. Chem. B 2010, 114 (46), 15389. doi: 10.1021/jp107886e
-
[12]
(12) Jordan, D. B.; Wagschal, K.; Gri rescu, A. A.; Braker, J. D. Appl. Microbiol. Biotechnol. 2013, 97 (10), 4415. doi: 10.1007/s00253-012-4475-4
-
[13]
(13) Vasella, A.; Davies, G. J.; Bohm, M. Curr. Opin. Chem. Biol. 2002, 6 (5), 619. doi: 10.1016/s1367-5931(02)00380-0
-
[14]
(14) Mccarter, J. D.; Withers, S. G. Curr. Opin. Struc. Biol. 1994, 4 (6), 885. doi: 10.1016/0959-440x(94)90271-2
-
[15]
(15) Zechel, D. L.; Withers, S. G. Curr. Opin. Chem. Biol. 2001, 5 (6), 643. doi: 10.1016/s1367-5931(01)00260-5
-
[16]
(16) Ludwiczek, M. L.; D'Angelo, I.; Yalloway, G. N.; Brockerman, J. A.; Okon, M.; Nielsen, J. E.; Strynadka, N. C. J.; Withers, S. G.; McIntosh, L. P. Biochemistry 2013, 52 (18), 3138. doi: 10.1021/bi400034m
-
[17]
(17) Dong, X. Y.; Du, W. J.; Liu, F. F. Acta Phys. -Chim. Sin. 2012, 28, 2735. [董晓燕, 都文婕, 刘夫锋. 物理化学学报, 2012, 28, 2735.] doi: 10.3866/pku.whxb201207162
-
[18]
(18) Dror, R. O.; Dirks, R. M.; Grossman, J. P.; Xu, H. F.; Shaw, D. E. Ann. Rev. Biophys. 2012, 41, 429. doi: 10.1146/annurevbiophys-042910-155245
-
[19]
(19) Yang, J. K.; Yoon, H. J.; Ahn, H. J.; Lee, B. I.; Pedelacq, J. D.; Liong, E. C.; Berendzen, J.; Laivenieks, M.; Vieille, C.; Zeikus, G. J.; Vocadlo, D. J.; Withers, S. G.; Suh, S.W. J. Mol. Biol. 2004, 335 (1), 155. doi: 10.1016/j.jmb.2003.10.026
-
[20]
(20) Santos, C. R.; Polo, C. C.; Correa, J. M.; Simao, R. D. G.; Seixas, F. A. V.; Murakami, M. T. Acta Crystallogra. D-Biol. Crystallogr. 2012, 68 (Suppl. 10), 1339. doi: 10.1107/s0907444912028491
-
[21]
(21) Brux, C.; Ben-David, A.; Shallom-Shezifi, D.; Leon, M.; Niefind, K.; Shoham, G.; Shoham, Y.; Schomburg, D. J. Mol. Biol. 2006, 359 (1), 97. doi: 10.1016/j.jmb.2006.03.005
-
[22]
(22) Brunzelle, J. S.; Jordan, D. B.; McCaslin, D. R.; Olczak, A.; Wawrzak, Z. Arch. Biochem. Biophys. 2008, 474 (1), 157. doi: 10.1016/j.abb.2008.03.007
-
[23]
(23) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4 (3), 435. doi: 10.1021/ct700301q
-
[24]
(24) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Proteins 2006, 65 (3), 712. doi: 10.1002/prot.21123
-
[25]
(25) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79 (2), 926. doi: 10.1063/1.445869
-
[26]
(26) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98 (12), 10089. doi: 10.1063/1.464397
-
[27]
(27) Berendsen, H. J. C.; Postma, J. P. M.; Vangunsteren, W. F.; Dinola, A.; Haak, J. R. J. Chem. Phys. 1984, 81 (8), 3684. doi: 10.1063/1.448118
-
[28]
(28) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. Model. 1996, 14 (1), 33. doi: 10.1016/0263-7855(96)00018-5
-
[29]
(29) Delano, W. L. The PyMOL Molecular Graphics System; Delano Scientific: San Carlos, CA, 2002.
-
[30]
(30) Mhlon , N. N.; Skelton, A. A.; Kruger, G.; Soliman, M. E. S.; Williams, I. H. Proteins 2014, 82 (9), 1747. doi: 10.1002/prot.24528
-
[31]
(31) Mohamed, I. P. K.; Subramani, K. Acta Phys. -Chim. Sin. 2009, 25, 2357. [Mohamed, I. P. K., Subramani, K. 物理化学学报, 2009, 25, 2357.] doi: 10.3866/PKU.WHXB20091131
-
[32]
(32) Huang, Q.; Opitz, R.; Knapp, E.W.; Herrmann, A. Biophys. J. 2002, 82 (2), 1050.
-
[33]
(33) Sondergaard, C. R.; Olsson, M. H. M.; Rostkowski, M.; Jensen, J. H. J. Chem. Theory Comput. 2011, 7 (7), 2284. doi: 10.1021/ct200133y
-
[34]
(34) Seeber, M.; Cecchini, M.; Rao, F.; Settanni, G.; Caflisch, A. Bioinformatics 2007, 23 (19), 2625. doi: 10.1093/bioinformatics/btm378
-
[35]
(35) Saha, B. C. J. Ind. Microbiol. Biot. 2001, 27 (4), 241. doi: 10.1038/sj.jim.7000184
-
[36]
(36) Chavez, R.; Bull, P.; Eyzaguirre, J. J. Biotechnol. 2006, 123 (4), 413. doi: 10.1016/j.jbiotec.2005.12.036
-
[37]
(37) Eswar, N.; Eramian, D.; Webb, B.; Shen, M. Y.; Sali, A. Protein Structure Modeling with MODELLER; Humana Press: New York, 2008.
-
[38]
(38) Kirschner, K. N.; Yongye, A. B.; Tschampel, S. M.; nzalez- Outeirino, J.; Daniels, C. R.; Foley, B. L.; Woods, R. J. J. Comput. Chem. 2008, 29 (4), 622. doi: 10.1002/jcc.20820
-
[39]
(39) Shallom, D.; Leon, M.; Bravman, T.; Ben-David, A.; Zaide, G.; Belakhov, V.; Shoham, G.; Schomburg, D.; Baasov, T.; Shoham, Y. Biochemistry 2005, 44 (1), 387. doi: 10.1021/bi048059w
-
[40]
(40) Yu, H. B.; Griffiths, T. M. Phys. Chem. Chem. Phys. 2014, 16 (12), 5785. doi: 10.1039/c4cp00351a
-
[1]
-
-
-
[1]
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027
-
[2]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[3]
Zhi Zhou , Yu-E Lian , Yuqing Li , Hui Gao , Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104
-
[4]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
-
[5]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[6]
Zhifang SU , Zongjie GUAN , Yu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
-
[7]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[8]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[9]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[10]
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
-
[11]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[12]
Zhonghua Xi , Xuanfeng Kong , Jinyue Yang , Bin Liu , Tingyu Zhu , Hui Zhang , Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123
-
[13]
Tingyu Zhu , Hui Zhang , Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011
-
[14]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[15]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[16]
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
-
[17]
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
-
[18]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
-
[19]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[20]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[1]
Metrics
- PDF Downloads(289)
- Abstract views(810)
- HTML views(42)