Citation: SHEN Zhuang-Lin, HE Gao-Hong, ZHANG Ning, HAO Ce. Molecular Dynamics Simulation of Reverse-Osmotic Salt Rejection and Water Transport through Double-Walled Carbon Nanotube[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1025-1034. doi: 10.3866/PKU.WHXB201504141
-
Molecular dynamics simulation was used to study the effect of the outer-wall on water flux in the inner channel by varying the inter-layer spacing of unconventional double-walled carbon nanotube (DWCNT) under reverse-osmosis conditions. Salt rejection and the water transport behavior inside the DWCNT were also examined. In the simulation, 0.5 mol·L-1 NaCl aqueous solution was used to mimic seawater, and the chiral index of the inner-wall was fixed at (8, 8). A constant force on the salt solution produced pressure. Calculation of the number density profile of ions along the DWCNT axis showed that the water could be separated completely from the NaCl aqueous solution in some types of DWCNTs studied. Analyses of the hydrogen-bond lifetime, potential of mean force, and dipole moment distribution of the water molecules inside the DWCNT showed different permeabilities by water molecules and ions. An increase in the inter-layer spacing improved water flow in the DWCNT, which decreased the salt rejection performance. Finally, it was found that DWCNT with an inter-layer spacing of 0.815 nm gave the optimum balance between water flux and salt rejection. This study provides a molecular insight into the use of DWCNT in desalination, and will enable the design of improved reverse-osmosis membranes with high performance in terms of salt rejection and water permeability.
-
-
[1]
(1) Li, H. L.; Jia, Y. X.; Hu, Y. D. Acta Phys. -Chim. Sin. 2012, 28 (3), 573. [李海兰, 贾玉香, 胡仰栋. 物理化学学报, 2012, 28 (3), 573.] doi: 10.3866/PKU.WHXB201112191
-
[2]
(2) Gethard, K.; Sae-Khow, O.; Mitra, S. ACS Appl. Mater. Interfaces 2011, 3 (2), 110. doi: 10.1021/am100981s
-
[3]
(3) Iijima, S. Nature 1991, 354 (6348), 56. doi: 10.1038/354056a0
-
[4]
(4) Pendergast, M. M.; Hoek, E. M. V. Energy Environ. Sci. 2011, 4 (6), 1946. doi: 10.1039/c0ee00541j
-
[5]
(5) Verweij, H.; Schillo, M. C.; Li, J. Small 2007, 3 (12), 1996.
-
[6]
(6) Holt, J. K.; Park, H. G.; Wang, Y. M.; Stadermann, M.; Artyukhin, A. B.; Gri ropoulos, C. P.; Noy, A.; Bakajin, O. Science 2006, 312 (5776), 1034. doi: 10.1126/science.1126298
-
[7]
(7) Kim, H. J.; Choi, K.; Baek, Y.; Kim, D. G.; Shim, J.; Yoon, J.; Lee, J. C. ACS Appl. Mater. Interfaces 2014, 6, 2826.
-
[8]
(8) Kiani, F.; Khosravi, T.; Moradi, F.; Rahbari, P.; Aghaei, M. J.; Arabi, M.; Tajik, H.; Kalantarinejad, R. J. Comput. Theor. Nanosci. 2014, 11 (5), 1237. doi: 10.1166/jctn.2014.3488
-
[9]
(9) Jia, Y. X.; Li, H. L.; Wang, M.; Wu, L. Y.; Hu, Y. D. Sep. Purif. Technol. 2010, 75, 55. doi: 10.1016/j.seppur.2010.07.011
-
[10]
(10) Shen, C.; Brozena, A. H.; Wang, Y. H. Nanoscale 2011, 3 (2), 503. doi: 10.1039/C0NR00620C
-
[11]
(11) Pfeiffer, R.; Pichler, T.; Kim, Y. A.; Kuzmany, H. Double-Wall Carbon Nanotubes. In Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications; Jorio, A., Dresselhaus, G., Dresselhaus, M. S. Eds.; Springer-Verlag Berlin: Berlin, 2008; Vol. 111, pp 495-530.
-
[12]
(12) Wang, L; Zhang, H.W.; Wang, J. B. Acta Phys. Sin. 2007, 56 (3), 1506. [王磊, 张洪武, 王晋宝. 物理学报, 2007, 56 (3), 1506.]
-
[13]
(13) Liu, K. H.; Wang, W. L.; Xu, Z.; Bai, X. D.; Wang, E. G.; Yao, Y. G.; Zhang, J.; Liu, Z. F. J. Am. Chem. Soc. 2009, 131 (1), 62. doi: 10.1021/ja808593v
-
[14]
(14) Vijayaraghavan, V.; Wong, C. H. Comput. Mater. Sci. 2014, 89, 36. doi: 10.1016/j.commatsci.2014.03.025
-
[15]
(15) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14 (1), 33. doi: 10.1016/0263-7855(96)00018-5
-
[16]
(16) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J. Comput. Chem. 2005, 26 (16), 1781.
-
[17]
(17) Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; MacKerell, A. D. J. Comput. Chem. 2010, 31 (4), 671.
-
[18]
(18) Lennard-Jones, J. E. Proc. Phys. Soc. 1931, 43 (5), 461. doi: 10.1088/0959-5309/43/5/301
-
[19]
(19) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103 (19), 8577. doi: 10.1063/1.470117
-
[20]
(20) MacKerell, A. D.; Banavali, N.; Foloppe, N. Biopolymers 2000, 56 (4), 257.
-
[21]
(21) Alexiadis, A.; Kassinos, S. Chem. Rev. 2008, 108 (12), 5014. doi: 10.1021/cr078140f
-
[22]
(22) Chen, Q. L; Kong, X.; Lu, D. N.; Liu, Z. CIESC Journal 2014, 65 (1), 319. [陈其乐, 孔宪, 卢滇楠, 刘铮. 化工学报, 2014, 65 (1), 319.]
-
[23]
(23) Moskowitz, I.; Snyder, M. A.; Mittal, J. J. Chem. Phys. 2014, 141 (18), 18C532.
-
[24]
(24) Zuo, G.; Shen, R.; Ma, S.; Guo, W. ACS Nano 2010, 4 (1), 205. doi: 10.1021/nn901334w
-
[25]
(25) Lee, H. S.; Tuckerman, M. E. J. Chem. Phys. 2007, 126 (16), 164501. doi: 10.1063/1.2718521
-
[26]
(26) Xu, H. F.; Stern, H. A.; Berne, B. J. J. Phys. Chem. B 2002, 106 (8), 2054. doi: 10.1021/jp013426o
-
[27]
(27) Chen, C.; Li, W. Z.; Song, Y. C.; Weng, L. D. Acta Phys. -Chim. Sin. 2011, 27 (6), 1372. [陈聪, 李维仲, 宋永臣, 翁林岽. 物理化学学报, 2011, 27 (6), 1372.] doi: 10.3866/PKU.WHXB20110626
-
[28]
(28) Elola, M. D.; Ladanyi, B. M. J. Chem. Phys. 2006, 125 (18), 184506. doi: 10.1063/1.2364896
-
[29]
(29) Zhang, N.; Li, W. Z.; Chen, C.; Zuo, J. G. Acta Phys. -Chim. Sin. 2013, 29 (9), 1891 [张宁, 李维仲, 陈聪, 左建国. 物理化学学报, 2013, 29 (9), 1891.] doi: 10.3866/PKU.WHXB201307121
-
[30]
(30) Tu, Y. S.; Lu, H. J.; Zhang, Y. Z.; Huynh, T.; Zhou, R. H. J. Chem. Phys. 2013, 138 (1), 015104. doi: 10.1063/1.4773221
-
[31]
(31) Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414 (6860), 188. doi: 10.1038/35102535
-
[32]
(32) Shao, Q.; Zhou, J.; Lu, L. H.; Lu, X. H.; Zhu, Y. D.; Jiang, S. Y. Nano Lett. 2009, 9, 989. doi: 10.1021/nl803044k
-
[33]
(33) Corry, B. J. Phys. Chem. B 2008, 112 (5), 1427. doi: 10.1021/jp709845u
-
[34]
(34) Cohen-Tanugi, D.; Grossman, J. C. Nano Lett. 2012, 12 (7), 3602. doi: 10.1021/nl3012853
-
[35]
(35) Hilder, T. A.; rdon, D.; Chung, S. H. Small 2009, 5 (19), 2183. doi: 10.1002/smll.v5:19
-
[36]
(36) Corry, B. Energy Environ. Sci. 2011, 4 (3), 751. doi: 10.1039/c0ee00481b
-
[37]
(37) Jia, Y. X.; Chen, L. J.; Li, Y.; Hu, Y. D. J. Chem Eng. Chin. Univ. 2014, 28 (4), 707. [贾玉香, 陈立军, 李燕, 胡仰栋. 高校化学工程学报, 2014, 28 (4), 707.]
-
[38]
(38) Humplik, T.; Lee, J.; O'Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E. N. Nanotechnology 2011, 22 (29), 292001. doi: 10.1088/0957-4484/22/29/292001
-
[39]
(39) Ho, T. A.; Striolo, A. Mol. Simul. 2014, 40 (14), 1190. doi: 10.1080/08927022.2013.854893
-
[40]
(40) ng, X. J.; Li, J. Y.; Lu, H. J.; Wan, R. Z.; Li, J. C.; Hu, J.; Fang, H. P. Nat. Nanotechnol. 2007, 2 (11), 709. doi: 10.1038/nnano.2007.320
-
[41]
(41) Zou, J. G.; Ji, B. H.; Feng, X. Q.; Gao, H. J. Small 2006, 2 (11), 1348.
-
[42]
(42) Zhu, F. Q.; Schulten, K. Biophys. J. 2003, 85, 236. doi: 10.1016/ S0006-3495(03)74469-5
-
[43]
(43) Kirkwood, J. G. J. Chem. Phys. 1935, 3 (5), 300. doi: 10.1063/1.1749657
-
[44]
(44) Zuo, J. C. Physical Mechanics Research on the Transport Properties of ConfinedWater Molecules at Nanoscale. Ph. D. Dissertation, Nanjing University of Aeronautics and Astronautics, Nanjing, 2012. [左广超. 纳米受限环境中水分子输运的物理力学研究[D]. 南京: 南京航空航天大学, 2012.]
-
[45]
(45) Chen, C. Theoretical Analysis of Intracellular Ice Growth and Molecular Dynamics Simulation of Hydrogen Bonding Characteristics of Cryoprotective Agent Solutions. Ph. D. Dissertation, Dalian University of Technology, Dalian, 2009. [陈聪. 胞内冰生长的理论分析及保护剂溶液氢键特性的 MD 模拟[D]. 大连: 大连理工大学, 2009.]
-
[46]
(46) Song, X. Z.; Fan, J. F.; Liu, D.; Li, H.; Li, R. J. Mol. Model. 2013, 19 (10), 4271. doi: 10.1007/s00894-013-1899-4
-
[1]
-
-
[1]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[2]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[3]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[4]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[5]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[6]
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
-
[7]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[8]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[9]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[10]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[11]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[12]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[13]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[14]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[15]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[16]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[17]
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
-
[18]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
-
[19]
Yinuo Wu , Jiantao Ye , Xie Zhou , Yu Qian , Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077
-
[20]
Peifeng Su , Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087
-
[1]
Metrics
- PDF Downloads(401)
- Abstract views(1025)
- HTML views(53)