Citation: CHEN Yang, ZHANG Zi-Lan, SUI Zhi-Jun, LIU Zhi-Ting, ZHOU Jing-Hong, ZHOU Xing-Gui. Preparation and Electrochemical Performance of Ni(OH)2 Nanowires/ Three-Dimensional Graphene Composite Materials[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1105-1112. doi: 10.3866/PKU.WHXB201504081
-
We synthesized Ni(OH)2 nanowires/three-dimensional graphene composites using a hydrothermal method, and compared their properties with those of three-dimensional graphene, Ni(OH)2 nanowires, reduced graphene oxide, and Ni(OH)2 nanowires/reduced graphene oxide. The samples were characterized using Xray diffraction, scanning electron microscopy, thermogravimetric analysis, and N2 physisorption measurements. The electrochemical performances were investigated using cyclic voltammetry and galvanostatic chargedischarge methods. The results showed that Ni(OH)2 nanowires of width 20-30 nm were closely combined with graphene and crosslinked to one another to form a three-dimensional structure with a high specific surface area (136 m2·g-1) and mesoporosity (pore diameter 20-50 nm). The mass fraction of Ni(OH)2 nanowires in the Ni(OH)2 nanowires/three-dimensional graphene composite was 88%. The maximum specific capacitance of the Ni(OH)2 nanowires/three-dimensional graphene composite was 1664 F·g-1 in 6 mol·L-1 KOH electrolyte at 1 A·g-1. The specific capacitance decreased by only 7% after 3000 cycles at 1 A·g-1. A comparative study of the specific capacitances and cycling performances of Ni(OH)2 nanowires, Ni(OH)2 nanowires/reduced graphene oxide, three-dimensional graphene, reduced graphene oxide, and Ni(OH)2 nanowires/three-dimensional graphene indicated that three-dimensional graphene with three-dimensional porosity and a larger specific surface area than conventional reduced graphene oxide enabled improved use of the active material and significantly enhanced the electrochemical performance of Ni(OH)2 nanowires.
-
-
[1]
(1) Miller, J. R.; Simon, P. Science 2008, 321 (5889), 651. doi: 10.1126/science.1158736
-
[2]
(2) Wang, J. D.; Peng, T. J.; Sun, H. J.; Hou, Y. D. Acta Phys. -Chim. Sin. 2014, 30 (11), 2077. [汪建德, 彭同江, 孙红娟, 侯云丹. 物理化学学报, 2014, 30 (11), 2077.] doi: 10.3866/PKU.WHXB201409152
-
[3]
(3) Zhu, Y.W.; Murali, S.; Stoller, M. D.; Ganesh, K.; Cai, W.W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Science 2011, 332 (6037), 1537. doi: 10.1126/science.1200770
-
[4]
(4) El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Science 2012, 335 (6074), 1326. doi: 10.1126/science.1216744
-
[5]
(5) Zhang, Y. D.; Lee, S. H.; Yoonessi, M.; Liang, K.W.; Pittman, C. U. Polymer 2006, 47 (9), 2984. doi: 10.1016/j. polymer.2006.03.005
-
[6]
(6) Zhao, Y. Q.; Schiraldi, D. A. Polymer 2005, 46 (25), 11640. doi: 10.1016/j.polymer.2005.09.070
-
[7]
(7) Dong, X. C.; Xu, H.; Wang, X.W.; Huang, Y. X.; Chan-Park, M. B.; Zhang, H.; Wang, L. H.; Huang, W.; Chen, P. ACS Nano 2012, 6 (4), 3206. doi: 10.1021/nn300097q
-
[8]
(8) Wang, H. L.; Cui, L. F.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. J. Am. Chem. Soc. 2010, 132 (40), 13978. doi: 10.1021/ja105296a
-
[9]
(9) Zhang, X. J.; Shi, W. H.; Zhu, J. X.; Zhao, W. Y.; Ma, J.; Mhaisalkar, S.; Maria, T.; Yang, Y. H.; Zhang, H.; Hng, H. H.; Yan, Q. Y. Nano Res. 2010, 3 (9), 643. doi: 10.1007/s12274-010-0024-6
-
[10]
(10) Feng, L. D.; Zhu, Y. F.; Ding, H. Y.; Ni, C. Y. J. Power Sources 2014, 267 430. doi: 10.1016/j.jpowsour.2014.05.092
-
[11]
(11) Meher, S. K.; Justin, P.; Rao, G. R. Nanoscale 2011, 3 (2), 683. doi: 10.1039/C0NR00555J
-
[12]
(12) Xia, X. H.; Tu, J. P.; Mai, Y. J.; Wang, X. L.; Gu, C. D.; Zhao, X. B. J. Mater. Chem. 2011, 21 (25), 9319. doi: 10.1039/c1jm10946d
-
[13]
(13) Chen, Z.; Augustyn, V.; Wen, J.; Zhang, Y.W.; Shen, M. Q.; Dunn, B.; Lu, Y. F. Adv. Mater. 2011, 23 (6), 791. doi: 10.1002/adma.201003658
-
[14]
(14) Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Mai, Y. J.; Wang, X. L.; Gu, C. D.; Zhao, X. B. RSC Adv. 2012, 2 (5), 1835. doi: 10.1039/c1ra00771h
-
[15]
(15) Ji, J. Y.; Zhang, L. L.; Ji, H. Y.; Li, Y.; Zhao, X.; Bai, X.; Fan, X. B.; Zhang, F. B.; Ruoff, R. S. ACS Nano 2013, 7 (7), 6237. doi: 10.1021/nn4021955
-
[16]
(16) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Gri rieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438 (7065), 197. doi: 10.1038/nature04233
-
[17]
(17) Yan, J.; Fan, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Adv. Funct. Mater. 2012, 22 (12), 2632. doi: 10.1002/adfm.201102839
-
[18]
(18) Wang, Y. G.; Zhou, D. D.; Zhao, D.; Hou, M. Y.; Wang, C. X.; Xia, Y. Y. J. Electrochem. Soc. 2013, 160 (1), A98.
-
[19]
(19) Li, C.; Shi, G. Q. Nanoscale 2012, 4 (18), 5549. doi: 10.1039/c2nr31467c
-
[20]
(20) Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Wang, Y.; Huang, Y.; Duan, X. F. Adv. Mater. 2013, 25 (40), 5779. doi: 10.1002/adma.v25.40
-
[21]
(21) Zhang, J. T.; Zhao, X. S. J. Phys. Chem. C 2012, 116 (9), 5420. doi: 10.1021/jp211474e
-
[22]
(22) Chen, H. Q.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Adv. Mater. 2008, 20 (18), 3557. doi: 10.1002/adma.200800757
-
[23]
(23) Lu, Y. J.; Wang, H. R.; Gu, Y.; Xu, L.; Sun, X. J.; Deng, Y. D. Acta Chim. Sin. 2012, 70, 1731. [卢亚骏, 王浩然, 顾煜, 徐岚, 孙晓骏, 邓意达. 化学学报, 2012, 70, 1731.] doi: 10.6023/A12070376
-
[24]
(24) Wang, H. L.; Robinson, J. T.; Li, X. L.; Dai, H. J. J. Am. Chem. Soc. 2009, 131 (29), 9910. doi: 10.1021/ja904251p
-
[25]
(25) Hall, D. S.; Lockwood, D. J.; Poirier, S.; Bock, C.; MacDougall, B. R. J. Phys. Chem. A 2012, 116 (25), 6771. doi: 10.1021/jp303546r
-
[26]
(26) Gao, T.; Jelle, B. P. J. Phys. Chem. C 2013, 117 (33), 17294. doi: 10.1021/jp405149d
-
[27]
(27) Zhang, L.; Yang, X.; Zhang, F.; Long, G. K.; Zhang, T. F.; Leng, K.; Zhang, Y.W.; Huang, Y.; Ma, Y. F.; Zhang, M. T.; Chen, Y. S. J. Am. Chem. Soc. 2013, 135 (15), 5921. doi: 10.1021/ja402552h
-
[28]
(28) Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157 (1), 11. doi: 10.1016/j.jpowsour.2006.02.065
-
[29]
(29) Lu, Q.; Chen, J. G.; Xiao, J. Q. Angew. Chem. Int. Edit. 2013, 52 (7), 1882. doi: 10.1002/anie.v52.7
-
[30]
(30) Zhu, J.W.; Chen, S.; Zhou, H.; Wang, X. Nano Res. 2012, 5 (1), 11. doi: 10.1007/s12274-011-0179-9
-
[31]
(31) Liu, H. Y.; Zhang, W.; Song, H. H.; Chen, X. H.; Zhou, J. S.; Ma, Z. K. Electrochim. Acta 2014, 146, 511. doi: 10.1016/j.electacta.2014.09.083
-
[32]
(32) Simon, P.; tsi, Y. Nat. Mater. 2008, 7 (11), 845. doi: 10.1038/nmat2297
-
[1]
-
-
[1]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[2]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[3]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[4]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[5]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[6]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[7]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[8]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[9]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[10]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[11]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[12]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[13]
Qiang Zhou , Pingping Zhu , Wei Shao , Wanqun Hu , Xuan Lei , Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064
-
[14]
Qingyang Cui , Feng Yu , Zirun Wang , Bangkun Jin , Wanqun Hu , Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046
-
[15]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[16]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[17]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[18]
Hongyun Liu , Jiarun Li , Xinyi Li , Zhe Liu , Jiaxuan Li , Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070
-
[19]
Lijuan Liu , Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060
-
[20]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[1]
Metrics
- PDF Downloads(424)
- Abstract views(951)
- HTML views(58)