Citation: HUANG Yan, FU Min, HE Tao. Synthesis of g-C3N4/BiVO4 Nanocomposite Photocatalyst and Its Application in Photocatalytic Reduction of CO2[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1145-1152. doi: 10.3866/PKU.WHXB201504015 shu

Synthesis of g-C3N4/BiVO4 Nanocomposite Photocatalyst and Its Application in Photocatalytic Reduction of CO2

  • Received Date: 9 February 2015
    Available Online: 1 April 2015

    Fund Project: 科技部国际合作资助项目(2015DFG62610) (2015DFG62610)

  • A visible-light-active graphitic-like carbon nitride (g-C3N4)/BiVO4 nanocomposite photocatalyst was synthesized using a facile ultrasonic dispersion method. The nanocomposite was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) spectroscopy, photoluminescence (PL) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and photocurrent response measurements. The photocatalytic activity in the photoreduction of CO2 under visible-light irradiation (λ>420 nm) was determined. The g-C3N4/BiVO4 catalyst containing 40% (w) g-C3N4 showed the highest photocatalytic activity; it was almost twice that of g-C3N4 nanosheets and four times that of BiVO4. The enhanced photocatalytic activity is attributed to the formation of heterostructures at the g-C3N4/BiVO4 interface and appropriate alignment of the energy levels between them, which can facilitate separation of photogenerated electrons and holes.

  • 加载中
    1. [1]

      (1) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature 1979, 277, 637. doi: 10.1038/277637a0

    2. [2]

      (2) Yaghoubi, H.; Li, Z.; Chen, Y.; N , H. T.; Bhethanabotla, V. R.; Joseph, B.; Ma, S. Q.; Schlaf, R.; Takshi, A. ACS Catal. 2015, 5, 327. doi: 10.1021/cs501539q

    3. [3]

      (3) Fujiwara, H.; Hosokawa, H.; Murakoshi, K.; Wada, Y.; Yanagida, S. Langmuir 1998, 14, 5154. doi: 10.1021/la9801561

    4. [4]

      (4) Zhou, Y.; Tian, Z. P.; Zhao, Z. Y.; Liu, Q.; Kou, J. H.; Chen, X. Y.; Gao, J.; Yan, S. C.; Zou, Z. G. ACS Appl. Mater. Inter. 2011, 3, 3594. doi: 10.1021/am2008147

    5. [5]

      (5) Wang, Z. Y.; Chou, H. C.; Wu, J. C.S.; Tsai, D. P.; Mul, G. Appl. Catal. A 2010, 380, 172. doi: 10.1016/j.apcata.2010.03.059

    6. [6]

      (6) Yan, S. C.; Ouyang, S. X.; Gao, J.; Yang, M.; Feng, J. Y.; Fan X. X.; Wan, L. J.; Li, Z. S.; Ye, J. H.; Zhou, Y.; Zou, Z. G. Angew. Chem. Int. Edit. 2010, 122, 6544. doi: 10.1002/ange.201003270

    7. [7]

      (7) Yui, T.; Kan, A.; Saitoh, C.; Koike, K.; Ibusuki, T.; Ishitani, O. ACS Appl. Mater. Inter. 2011, 3, 2594. doi: 10.1021/am200425y

    8. [8]

      (8) Zhao, Z. H.; Fan, J. M.; Wang, J. Y.; Li, R. F. Catal. Commun. 2012, 21, 32. doi: 10.1016/j.catcom.2012.01.022

    9. [9]

      (9) Truong, Q. D.; Liu, J. Y.; Chung, C. C.; Ling, Y. C. Catal. Commun. 2012, 19, 85. doi: 10.1016/j.catcom.2011.12.025

    10. [10]

      (10) Hensel, J.; Wang, G. M.; Li, Y.; Zhang, J. Z. Nano Lett. 2010, 10, 478. doi: 10.1021/nl903217w

    11. [11]

      (11) Xiang, Q. J.; Yu, J. G.; Jaroniec, M. J. Am. Chem. Soc. 2012, 134, 6575. doi: 10.1021/ja302846n

    12. [12]

      (12) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/nmat2317

    13. [13]

      (13) Maeda, K.; Kuriki, R.; Zhang, M.W.; Wang, X. C.; Ishitani, O. J. Mater. Chem. A 2014, 2, 15146. doi: 10.1039/C4TA03128H

    14. [14]

      (14) Bai, S.; Wang, X. J.; Hu, C. Y.; Xie, M. L.; Jiang, J.; Xiong, Y. J. Chem. Commun. 2014, 50, 6094. doi: 10.1039/c4cc00745j

    15. [15]

      (15) Zhang, W. D.; Sun, Y. J.; Dong, F.; Zhang, W.; Duan, S.; Zhang, Q. Dalton. Trans. 2014, 43, 12026. doi: 10.1039/C4DT00513A

    16. [16]

      (16) Hu, M.; Reboul, J.; Furukawa, S.; Radhakrishnan, L.; Zhang, Y. J.; Srinivasu, P.; Iwai, H.; Wang, H. J.; Nemoto, Y.; Suzuki, N.; Kitagawa, S.; Yamauchi, Y. Chem. Commun. 2011, 47, 8124. doi: 10.1039/c1cc12378e

    17. [17]

      (17) Yan, S. C.; Li, Z. S.; Zou, Z. G. Langmuir 2009, 25, 10397. doi: 10.1021/la900923z

    18. [18]

      (18) Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Adv. Funct. Mater. 2012, 22, 4763. doi: 10.1002/adfm.v22.22

    19. [19]

      (19) Zhang, X. D.; Wang, H. X.; Wang, H.; Zhang, Q.; Xie, J. F.; Tian, Y. P.; Wang, J.; Xie, Y. Adv. Mater. 2014, 26, 4438. doi: 10.1002/adma.v26.26

    20. [20]

      (20) Lan, B. Y.; Shi, H. F. Acta Phys. -Chim. Sin. 2014, 30, 2177. [蓝奔月, 史海峰. 物理化学学报, 2014, 30, 2177.] doi: 10.3866/PKU.WHXB201409303

    21. [21]

      (21) Shi, H. F.; Chen, G. Q.; Zhang, C. L.; Zou, Z. G. ACS Catal. 2014, 4, 3637. doi: 10.1021/cs500848f

    22. [22]

      (22) Ye, Y. M.; Zhang, L. H.; Teng, B. T.; Fan, M. H. Environ. Sci. Tech. 2015, 49, 649. doi: 10.1021/es5046309

    23. [23]

      (23) Kudo, A.; Ueda, K.; Kato, H.; Mikami, I. Catal. Lett. 1998, 53, 229. doi: 10.1023/A:1019034728816

    24. [24]

      (24) Sun, Y. F.; Wu, C. Z.; Long, R.; Cui, Y.; Zhang, S. D.; Xie, Y. Chem. Commun. 2009, 4542.

    25. [25]

      (25) Ke, D. N.; Peng, T. Y.; Ma, L.; Cai, P.; Dai, K. Inorg. Chem. 2009, 48, 4685. doi: 10.1021/ic900064m

    26. [26]

      (26) Zhang, L.; Chen, D. R.; Jiao, X. L. J. Phys. Chem. B 2006, 110, 2668. doi: 10.1021/jp056367d

    27. [27]

      (27) Wang, Z. Q.; Luo, W. J.; Yan, S. C.; Feng, J. Y.; Zhao, Z. Y.; Zhu, Y. S.; Li, Z. S.; Zou, Z. G. CrystEngComm 2011, 13, 2500. doi: 10.1039/c0ce00799d

    28. [28]

      (28) Mao, J.; Peng, T. Y.; Zhang, X. H.; Li, K.; Zan, L. Catal. Commun. 2012, 28, 38. doi: 10.1016/j.catcom.2012.08.008

    29. [29]

      (29) Zhang, A. P.; Zhang, J. Z. J. Alloy. Compd. 2010, 491, 631. doi: 10.1016/j.jallcom.2009.11.027

    30. [30]

      (30) Liu, K. J.; Chang, Z. D.; Li, W. J.; Che, P.; Zhou, H. L. Sci. China Chem. 2012, 55, 1770. doi: 10.1007/s11426-012-4525-x

    31. [31]

      (31) Cao, F. P.; Ding, C. H.; Liu, K. C.; Kang, B. Y.; Liu, W. M. Cryst. Res. Technol. 2014, 49, 933. doi: 10.1002/crat.v49.12

    32. [32]

      (32) Ehsan, M. F.; Ashiq, M. N.; Bi, F.; Bi, Y. Q.; Palanisamy, S.; He, T. RSC Adv. 2014, 4, 48411. doi: 10.1039/C4RA06828A

    33. [33]

      (33) Pérez, U. M. G.; Guzmán, S. S.; Cruz, A. M.; Méndez, U. O. J. Mol. Catal. A 2011, 335, 169. doi: 10.1016/j.molcata.2010.11.030

    34. [34]

      (34) Hong, J. D.; Xia, X. Y.; Wang, Y. S.; Xu, R. J. Mater. Chem. 2012, 22, 15006. doi: 10.1039/c2jm32053c

    35. [35]

      (35) Yuan, Y. P.; Yin, L. S.; Cao, S.W.; Gu, L. N.; Xu, G. S.; Du, P. W.; Chai, H.; Liao, Y. S.; Xue, C. Green Chem. 2014, 16, 4663. doi: 10.1039/C4GC01517G

    36. [36]

      (36) Li, M. L.; Zhang, L. X.; Fan, X. Q.; Zhou, Y. J.; Wu, M. Y.; Shi, J. L. J. Mater. Chem. 2015, 3, 5189. doi: 10.1039/c4ta06295g

    37. [37]

      (37) Xiong, Z. G.; Zhang, L. L.; Ma, J. Z.; Zhao, X. S. Chem. Commun. 2010, 46, 6099. doi: 10.1039/c0cc01259a

    38. [38]

      (38) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater. 2005, 17, 2588. doi: 10.1021/cm049100k

    39. [39]

      (39) Xu, Q. C.; Wellia, D. V.; Ng, Y. H.; Amal, R.; Tan, T. T. Y. J. Phys. Chem. C 2011, 115, 7419. doi: 10.1021/jp1090137

    40. [40]

      (40) Daude, N.; ut, C.; Jouanin, C. Phys. Rev. B 1977, 15, 3229. doi: 10.1103/PhysRevB.15.3229


  • 加载中
    1. [1]

      Yutong Liu Xuemin Jing . Research Progress on the Catalytic Conversion of Methane in the Context of the “Dual Carbon” Goals. University Chemistry, 2025, 40(10): 101-113. doi: 10.12461/PKU.DXHX202412018

    2. [2]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    3. [3]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    4. [4]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    5. [5]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    6. [6]

      Rui LIUXinjun ZHOUTao WANG . Photocatalytic degradation performance of tetracycline by MOF-74-Mn/g-C3N4 Z-type heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1796-1804. doi: 10.11862/CJIC.20250033

    7. [7]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Jiayao WangGuixu PanNing WangShihan WangYaolin ZhuYunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168

    9. [9]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    10. [10]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    14. [14]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    15. [15]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    16. [16]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    17. [17]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Chengxiao ZhaoZhaolin LiDongfang WuXiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149

Metrics
  • PDF Downloads(509)
  • Abstract views(1023)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return