Citation: WANG Li, JI Shan, CHEN Qi-Bin, LIU Hong-Lai. Structural Transition of Poly(L-lactic acid) Film Induced by Compression at Air/Water Interface[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1162-1168. doi: 10.3866/PKU.WHXB201504013
-
Poly(lactic acid) (PLA) has attracted considerable interest as an environmentally friendly and biodegradable polymer. The properties of poly(L-lactic acid) (PLLA) at an air/water interface were studied based on the Langmuir-Blodgett (LB) film balance and atomic force microscopy (AFM). The surface pressure-area (π-A) isotherm indicated that the surface pressure of PLLA initially increased as the interfacial film was compressed; at π=9.0 mN·m-1, a plateau was observed in the π-A isotherm, in which the area of the repeat unit was in the approximate range 0.11-0.17 nm2. The AFM results showed that there is a clear structural transition in the PLLA film during the compression: (i) at the beginning of the plateau, a number of fibrils are present at the air/water interface and (ii) multilayer structures (at least bilayer, i.e., the underlying layer and top layer consisting of fibrils) is formed in the plateau region. In particular, when π=20.0 mN·m-1, a thin film of PLLA of thickness about 6.0 nm was fabricated. Our findings suggest that the plateau in the PLLA π-A isotherm is closely related to a change in the film structure from monolayer to multilayer at the air/water interface. This is significantly different from the behavior of conventional amphiphiles, because the plateau in amphiphiles π-A isotherm is equivalent to a phase transition of monolayers derived from amphiphiles in a two-dimensional plane.
-
-
[1]
(1) Langer, R.; Tirrell, D. A. Nature 2004, 428, 487. doi: 10.1038/nature02388
-
[2]
(2) Ha, C.; Gardella, J. A., Jr. Chem. Rev. 2005, 105, 4205. doi: 10.1021/cr040419y
-
[3]
(3) Lee, W.; Iwata, T.; Gardella, J. A., Jr. Langmuir 2005, 21, 11180. doi: 10.1021/la051137b
-
[4]
(4) Fischer, A. M.; Frey, H. Macromolecules 2010, 43, 8539. doi: 10.1021/ma101710t
-
[5]
(5) Kawalec, M.; Adamus, G.; Kurcok, P.; Kowalczuk, M.; Foltran, I.; Focarete, M. L.; Scandola, M. Biomacromolecules 2007, 8, 1054. doi: 10.1021/bm061155n
-
[6]
(6) Kulinski, Z.; Piorkowska, E. Polymer 2005, 46, 10290. doi: 10.1016/j.polymer.2005.07.101
-
[7]
(7) Urayama, H.; Kanamori, T.; Fukushima, K.; Kimura, Y. Polymer 2003, 44, 5635. doi: 10.1016/S0032-3861(03)00583-4
-
[8]
(8) Hu, J.; Sun, X.; Ma, H.; Xie, C.; Chen, Y. E.; Ma, P. X. Biomaterials 2010, 31, 7971. doi: 10.1016/j.biomaterials.2010.07.028
-
[9]
(9) Shao, J.; Wang, Y.; Chen, X.; Hu, X.; Du, C. Colloids Surf. B 2014, 120, 97. doi: 10.1016/j.colsurfb.2014.05.021
-
[10]
(10) Ni, S.; Lee, W.; Li, B.; Esker, A. R. Langmuir 2006, 22, 3672. doi: 10.1021/la060084a
-
[11]
(11) Fukuhira, Y.; Kitazono, E.; Hayashi, T.; Kaneko, H.; Tanaka, M.; Shimomura, M.; Sumi, Y. Biomaterials 2006, 27, 1797. doi: 10.1016/j.biomaterials.2005.10.019
-
[12]
(12) Petty, M. C. Langmuir-Blodgett Films: An Introduction; Cambridge University Press: Cambridge, 1996; pp 1-37.
-
[13]
(13) Gaines, G. L.; Roberts, G. Insoluble Monolayers at Liquid-Gas Interfaces; JohnWiley & Sons, Inc.: New York, 1966; pp 136-202.
-
[14]
(14) Ulman, A. An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly; Academic Press: Boston, 1991; pp 101-105.
-
[15]
(15) Penner, T. L.; Motschmann, H. R.; Armstrong, N. J.; Ezenyilimba, M. C.; Williams, D. J. Nature 1994, 367, 49. doi: 10.1038/367049a0
-
[16]
(16) Allen, D.; Westerblad, H. Science 2004, 305, 1112. doi: 10.1126/science.1103078
-
[17]
(17) Wijekoon, W. M. K. P.; Wijaya, S. K.; Bhawalkar, J. D.; Prasad, P. N.; Penner, T. L.; Armstrong, N. J.; Ezenyilimba, M. C.; Williams, D. J. J. Am. Chem. Soc. 1996, 118, 4480. doi: 10.1021/ja953974d
-
[18]
(18) Pelletier, I.; Pézolet, M. Macromolecules 2004, 37, 4967. doi: 10.1021/ma035949v
-
[19]
(19) Bourque, H.; Laurin, I.; Pézolet, M.; Klass, J. M.; Lennox, R. B.; Brown, G. R. Langmuir 2001, 17, 5842. doi: 10.1021/la0009792
-
[20]
(20) Klass, J. M.; Lennox, R. B.; Brown, G. R.; Bourque, H.; Pézolet, M. Langmuir 2003, 19, 333. doi: 10.1021/la020606w
-
[21]
(21) Sato, G.; Nishitsuji, S.; Kumaki, J. J. Phys. Chem. B 2013, 117, 9067. doi: 10.1021/jp403195g
-
[22]
(22) Gurarslan, A.; Tonelli, A. E. Macromolecules 2011, 44, 3856. doi: 10.1021/ma200530w
-
[23]
(23) Bjørnholm, T.; Greve, D. R.; Reitzel, N.; Hassenkam, T.; Kjaer, K.; Howes, P. B.; Larsen, N. B.; Bøgelund, J.; Jayaraman, M.; Ewbank, P. C.; McCullough, R. D. J. Am. Chem. Soc. 1998, 120, 7643. doi: 10.1021/ja981077e
-
[24]
(24) Casillas-Ituarte, N. N.; Chen, X.; Castada, H.; Allen, H. C. J. Phys. Chem. B 2010, 114, 9485. doi: 10.1021/jp1022357
-
[25]
(25) Picas, L.; Suárez-Germà, C.; Teresa Montero, M.; Domènech, Ò.; Hernández-Borrell, J. Langmuir 2012, 28, 701. doi: 10.1021/la203795t
-
[26]
(26) Romão, R. I. S.; Ferreira, Q.; Morgado, J.; Martinho, J. M. G.; nçalves da Silva, A. M. P. S. Langmuir 2010, 26, 17165. doi: 10.1021/la103029d
-
[27]
(27) Genson, K. L.; Vaknin, D.; Villacencio, O.; McGrath, D. V.; Tsukruk, V. V. J. Phys. Chem. B 2002, 106, 11277. doi: 10.1021/jp026244i
-
[28]
(28) Fang, J.; Knobler, C. M.; Gingery, M.; Eiserling, F. A. J. Phys. Chem. B 1997, 101, 8692. doi: 10.1021/jp971057j
-
[29]
(29) Wang, M. H.; Janout, V.; Regen, S. L. Langmuir 2012, 28, 4614. doi: 10.1021/la204985d
-
[30]
(30) Perepichka, I. I.; Borozenko, K.; Badia, A.; Bazuin, C. G. J. Am. Chem. Soc. 2011, 133, 19702. doi: 10.1021/ja209502d
-
[31]
(31) De Santis, P.; Kovacs, A. J. Biopolymers 1968, 6, 299. doi: 10.1002/bip.1968.360060305
-
[32]
(32) Okihara, T.; Tsuji, M.; Kawaguchi, A.; Katayama, K. I.; Tsuju, H.; Hyon, S. H.; Ikada, Y. J. Macromol. Sci. Phys. B 1991, 30, 119. doi: 10.1080/00222349108245788
-
[1]
-
-
[1]
Ji Qi , Jianan Zhu , Yanxu Zhang , Jiahao Yang , Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050
-
[2]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[3]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[4]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[5]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
-
[6]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[7]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[8]
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
-
[9]
Gaoyan Chen , Chaoyue Wang , Juanjuan Gao , Junke Wang , Yingxiao Zong , Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011
-
[10]
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
-
[11]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[12]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[13]
Yanhui Sun , Junmin Nan , Guozheng Ma , Xiaoxi Zuo , Guoliang Li , Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023
-
[14]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[15]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[16]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[17]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[18]
Haiyang Zhang , Yanzhao Dong , Haojie Li , Ruili Guo , Zhicheng Zhang , Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035
-
[19]
Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043
-
[20]
Xiao Liu , Guangzhong Cao , Mingli Gao , Hong Wu , Hongyan Feng , Chenxiao Jiang , Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043
-
[1]
Metrics
- PDF Downloads(304)
- Abstract views(635)
- HTML views(25)