Citation: TU Zhe-Yan, WANG Wen-Liang. Coupled-Cluster Theoretical Study of Structures and Spectroscopic Constants of Dimers Zn2 and Cd2 with Spin-Orbit Coupling[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1054-1058. doi: 10.3866/PKU.WHXB201503261 shu

Coupled-Cluster Theoretical Study of Structures and Spectroscopic Constants of Dimers Zn2 and Cd2 with Spin-Orbit Coupling

  • Received Date: 14 November 2014
    Available Online: 26 March 2015

    Fund Project: 西安工程大学博士科研启动基金(BS1211) (BS1211)陕西省教育厅专项科研计划项目(2013JK0679)资助 (2013JK0679)

  • The structures and spectroscopic constants of Zn2 and Cd2 were studied using the coupled-cluster theory with spin-orbit coupling based on the two-component relativistic effective core potential and matched basis sets aug-cc-pvnz-pp (n=Q, 5), combining complete basis set extrapolation of the electronic correlation energy and fourth-order polynomial fitting technique. Spin-orbit coupling was included in the post-Hartree-Fock procedure, i.e., in the coupled-cluster iteration, to obtain more reasonable results, although the spin-orbit coupling effect observed in Zn2 and Cd2 is not visible as it is in Hg2. Our theoretical results agree well with the latest experimental values and other groups' theoretical results, and will be helpful in understanding the spectral characteristics of these two dimers.

  • 
    1. [1]

      (1) Pyykko, P. Chem. Rev. 1988, 88, 563. doi: 10.1021/cr00085a006

    2. [2]

      (2) Bartlett, R. J.; Musial, M. Rev. Mod. Phys. 2007, 79, 291. doi: 10.1103/RevModPhys.79.291

    3. [3]

      (3) Liu, W.; VanWullen, C. J. Chem. Phys. 1999, 110, 3730. doi: 10.1063/1.478237

    4. [4]

      (4) Wang, F.; Gauss, J.; vanWullen, C. J. Chem. Phys. 2008, 129, 064113. doi: 10.1063/1.2968136

    5. [5]

      (5) Christiansen, O.; Hattig, C.; Gauss, J. J. Chem. Phys. 1998, 109, 4745. doi: 10.1063/1.477086

    6. [6]

      (6) Yu, M.; Dolg, M. Chemical Physics Letters 1997, 273, 329. doi: 10.1016/S0009-2614(97)00609-X

    7. [7]

      (7) Schautz, F.; Flad, H. J.; Dolg, M. Theoretical Chemistry Accounts 1998, 99, 231. doi: 10.1007/s002140050331

    8. [8]

      (8) Strojecki, M.; Ruszczak, M.; ?ukomski, M.; Koperski, J. Chemical Physics 2007, 340, 171. doi: 10.1016/j.chemphys.2007.08.016

    9. [9]

      (9) Strojecki, M.; Ruszczak, M.; Kro?nicki, M.; ?ukomski, M.; Koperski, J. Chemical Physics 2006, 327, 229. doi: 10.1016/j.chemphys.2006.04.008

    10. [10]

      (10) Wei, L. M.; Li, P.; Qiao, L.W.; Tang, K. T. J. Chem. Phys. 2013, 139, 154306. doi: 10.1063/1.4824889

    11. [11]

      (11) Bucinsky, L.; Biskupic, S.; Ilcin, M.; Lukes, V.; Laurinc, V. Journal of Computational Chemistry 2009, 30, 65. doi: 10.1002/jcc.v30:1

    12. [12]

      (12) Pahl, E.; Figgen, D.; Borschevsky, A.; Peterson, K. A.; Schwerdtfeger, P. Theoretical Chemistry Accounts 2011, 129, 651. doi: 10.1007/s00214-011-0912-1

    13. [13]

      (13) Bera, N. C.; Das, A. K. Chemical Physics Letters 2007, 437, 257. doi: 10.1016/j.cplett.2007.02.010

    14. [14]

      (14) Bender, C. F.; Rescigno, T. N.; Schaefer, H. F., III; Orel, A. E. J. Chem. Phys. 1979, 71, 1122. doi: 10.1063/1.438456

    15. [15]

      (15) Takewaki, H.; Tomonari, M.; Nakamura, T. J. Chem. Phys. 1985, 82, 5608. doi: 10.1063/1.448596

    16. [16]

      (16) Czuchaj, E.; Rebentrost, F.; Stoll, H.; Preuss, H. Chemical Physics Letters 1996, 255, 203. doi: 10.1016/0009-2614(96)00336-3

    17. [17]

      (17) Ellingsen, K.; Saue, T.; Pouchan, C.; Gropen, O. Chemical Physics 2005, 311, 35. doi: 10.1016/j.chemphys.2004.09.038

    18. [18]

      (18) Hay, P. J.; Dunning, T. H., Jr.; Raffenetti, R. C. J. Chem. Phys. 1976, 65, 2679. doi: 10.1063/1.433411

    19. [19]

      (19) Figgen, D.; Rauhut, G.; Dolg, M.; Stoll, H. Chemical Physics 2005, 311, 227. doi: 10.1016/j.chemphys.2004.10.005

    20. [20]

      (20) Kullie, O. Journal of Atomic, Molecular, and Optical Physics 2012, 2012, 361974. doi: 10.1155/2012/361947

    21. [21]

      (21) Kullie, O. Chemical Physics 2013, 415, 112. doi: 10.1016/j.chemphys.2012.12.020

    22. [22]

      (22) Stanton, J. F.; Gauss, J.; Watts, J. D.; Bartlett, R. J. J. Chem. Phys. 1991, 94, 4334. doi: 10.1063/1.460620

    23. [23]

      (23) Kucharski, S. A.; Bartlett, R. J. J. Chem. Phys. 1992, 97, 4282. doi: 10.1063/1.463930

    24. [24]

      (24) Raghavachari, K.; Trucks, G.W.; Pople, J. A.; Head- rdon, M. Chemical Physics Letters 1989, 157, 479. doi: 10.1016/S0009-2614(89)87395-6

    25. [25]

      (25) Watts, J. D.; Gauss, J.; Bartlett, R. J. J. Chem. Phys. 1993, 98, 8718. doi: 10.1063/1.464480

    26. [26]

      (26) CFOUR, a quantum chemical program package written by Stanton, J. F.; Gauss, J.; Harding, M. E.; Szalay, P. G. with contributions from Auer, A. A.; Bartlett, R. J.; Benedikt, U.; Berger, C.; Bernholdt, D. E.; Bomble, Y. J.; Cheng, L.; Christiansen, O.; Heckert, M.; Heun, O.; Huber, C.; Jagau, T. C.; Jonsson, D.; Jusélius, J.; Klein, K.; Lauderdale, W. J.; Matthews, D. A.; Metzroth, T.; Mück, L. A.; O'Neill, D. P.; Price, D. R.; Prochnow, E.; Puzzarini, C.; Ruud, K.; Schiffmann, F.; Schwalbach, W.; Simmons, C.; Stopkowicz, S.; Tajti, A.; Vázquez, J.; Wang, F.; Watts, J. D. and the integral packages MOLECULE (Almlöf, J.; Taylor, P. R.), PROPS (Taylor, P. R.), ABACUS (Helgaker, T.; Jensen, H. J. A.; Jørgensen, P.; Olsen, J.), and ECP routines by Mitin, A. V.; van Wüllen, C. For the current version, see http://www.cfour.de.

    27. [27]

      (27) Tu, Z. Y.; Yang, D. D.; Wang, F.; Guo, J.W. J. Chem. Phys. 2011, 135, 034115. doi: 10.1063/1.3611052

    28. [28]

      (28) Peterson, K. A.; Puzzarini, C. Theoretical Chemistry Accounts 2005, 114, 283. doi: 10.1007/s00214-005-0681-9

    29. [29]

      (29) Yang, D. D.; Wang, F. Theoretical Chemistry Accounts 2012, 131, 1117. doi: 10.1007/s00214-012-1117-y

    30. [30]

      (30) Strojecki, M.; Kro?nicki, M.; Z da, P.; Koperski, J. Chemical Physics Letters 2010, 489, 20. doi: 10.1016/j.cplett.2010.02.039


    1. [1]

      (1) Pyykko, P. Chem. Rev. 1988, 88, 563. doi: 10.1021/cr00085a006

    2. [2]

      (2) Bartlett, R. J.; Musial, M. Rev. Mod. Phys. 2007, 79, 291. doi: 10.1103/RevModPhys.79.291

    3. [3]

      (3) Liu, W.; VanWullen, C. J. Chem. Phys. 1999, 110, 3730. doi: 10.1063/1.478237

    4. [4]

      (4) Wang, F.; Gauss, J.; vanWullen, C. J. Chem. Phys. 2008, 129, 064113. doi: 10.1063/1.2968136

    5. [5]

      (5) Christiansen, O.; Hattig, C.; Gauss, J. J. Chem. Phys. 1998, 109, 4745. doi: 10.1063/1.477086

    6. [6]

      (6) Yu, M.; Dolg, M. Chemical Physics Letters 1997, 273, 329. doi: 10.1016/S0009-2614(97)00609-X

    7. [7]

      (7) Schautz, F.; Flad, H. J.; Dolg, M. Theoretical Chemistry Accounts 1998, 99, 231. doi: 10.1007/s002140050331

    8. [8]

      (8) Strojecki, M.; Ruszczak, M.; ?ukomski, M.; Koperski, J. Chemical Physics 2007, 340, 171. doi: 10.1016/j.chemphys.2007.08.016

    9. [9]

      (9) Strojecki, M.; Ruszczak, M.; Kro?nicki, M.; ?ukomski, M.; Koperski, J. Chemical Physics 2006, 327, 229. doi: 10.1016/j.chemphys.2006.04.008

    10. [10]

      (10) Wei, L. M.; Li, P.; Qiao, L.W.; Tang, K. T. J. Chem. Phys. 2013, 139, 154306. doi: 10.1063/1.4824889

    11. [11]

      (11) Bucinsky, L.; Biskupic, S.; Ilcin, M.; Lukes, V.; Laurinc, V. Journal of Computational Chemistry 2009, 30, 65. doi: 10.1002/jcc.v30:1

    12. [12]

      (12) Pahl, E.; Figgen, D.; Borschevsky, A.; Peterson, K. A.; Schwerdtfeger, P. Theoretical Chemistry Accounts 2011, 129, 651. doi: 10.1007/s00214-011-0912-1

    13. [13]

      (13) Bera, N. C.; Das, A. K. Chemical Physics Letters 2007, 437, 257. doi: 10.1016/j.cplett.2007.02.010

    14. [14]

      (14) Bender, C. F.; Rescigno, T. N.; Schaefer, H. F., III; Orel, A. E. J. Chem. Phys. 1979, 71, 1122. doi: 10.1063/1.438456

    15. [15]

      (15) Takewaki, H.; Tomonari, M.; Nakamura, T. J. Chem. Phys. 1985, 82, 5608. doi: 10.1063/1.448596

    16. [16]

      (16) Czuchaj, E.; Rebentrost, F.; Stoll, H.; Preuss, H. Chemical Physics Letters 1996, 255, 203. doi: 10.1016/0009-2614(96)00336-3

    17. [17]

      (17) Ellingsen, K.; Saue, T.; Pouchan, C.; Gropen, O. Chemical Physics 2005, 311, 35. doi: 10.1016/j.chemphys.2004.09.038

    18. [18]

      (18) Hay, P. J.; Dunning, T. H., Jr.; Raffenetti, R. C. J. Chem. Phys. 1976, 65, 2679. doi: 10.1063/1.433411

    19. [19]

      (19) Figgen, D.; Rauhut, G.; Dolg, M.; Stoll, H. Chemical Physics 2005, 311, 227. doi: 10.1016/j.chemphys.2004.10.005

    20. [20]

      (20) Kullie, O. Journal of Atomic, Molecular, and Optical Physics 2012, 2012, 361974. doi: 10.1155/2012/361947

    21. [21]

      (21) Kullie, O. Chemical Physics 2013, 415, 112. doi: 10.1016/j.chemphys.2012.12.020

    22. [22]

      (22) Stanton, J. F.; Gauss, J.; Watts, J. D.; Bartlett, R. J. J. Chem. Phys. 1991, 94, 4334. doi: 10.1063/1.460620

    23. [23]

      (23) Kucharski, S. A.; Bartlett, R. J. J. Chem. Phys. 1992, 97, 4282. doi: 10.1063/1.463930

    24. [24]

      (24) Raghavachari, K.; Trucks, G.W.; Pople, J. A.; Head- rdon, M. Chemical Physics Letters 1989, 157, 479. doi: 10.1016/S0009-2614(89)87395-6

    25. [25]

      (25) Watts, J. D.; Gauss, J.; Bartlett, R. J. J. Chem. Phys. 1993, 98, 8718. doi: 10.1063/1.464480

    26. [26]

      (26) CFOUR, a quantum chemical program package written by Stanton, J. F.; Gauss, J.; Harding, M. E.; Szalay, P. G. with contributions from Auer, A. A.; Bartlett, R. J.; Benedikt, U.; Berger, C.; Bernholdt, D. E.; Bomble, Y. J.; Cheng, L.; Christiansen, O.; Heckert, M.; Heun, O.; Huber, C.; Jagau, T. C.; Jonsson, D.; Jusélius, J.; Klein, K.; Lauderdale, W. J.; Matthews, D. A.; Metzroth, T.; Mück, L. A.; O'Neill, D. P.; Price, D. R.; Prochnow, E.; Puzzarini, C.; Ruud, K.; Schiffmann, F.; Schwalbach, W.; Simmons, C.; Stopkowicz, S.; Tajti, A.; Vázquez, J.; Wang, F.; Watts, J. D. and the integral packages MOLECULE (Almlöf, J.; Taylor, P. R.), PROPS (Taylor, P. R.), ABACUS (Helgaker, T.; Jensen, H. J. A.; Jørgensen, P.; Olsen, J.), and ECP routines by Mitin, A. V.; van Wüllen, C. For the current version, see http://www.cfour.de.

    27. [27]

      (27) Tu, Z. Y.; Yang, D. D.; Wang, F.; Guo, J.W. J. Chem. Phys. 2011, 135, 034115. doi: 10.1063/1.3611052

    28. [28]

      (28) Peterson, K. A.; Puzzarini, C. Theoretical Chemistry Accounts 2005, 114, 283. doi: 10.1007/s00214-005-0681-9

    29. [29]

      (29) Yang, D. D.; Wang, F. Theoretical Chemistry Accounts 2012, 131, 1117. doi: 10.1007/s00214-012-1117-y

    30. [30]

      (30) Strojecki, M.; Kro?nicki, M.; Z da, P.; Koperski, J. Chemical Physics Letters 2010, 489, 20. doi: 10.1016/j.cplett.2010.02.039


  • 加载中
    1. [1]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    2. [2]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    5. [5]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    6. [6]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    7. [7]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    8. [8]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    9. [9]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    10. [10]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    11. [11]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    12. [12]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    17. [17]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    18. [18]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    19. [19]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    20. [20]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

Metrics
  • PDF Downloads(367)
  • Abstract views(754)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return