Citation: LIU Hai-Wang, SHEN Xing-Hai, CHEN Qing-De. Extraction Mechanism and Selectivity of UO2(NO3)2 in Tributylphosphine Oxide-Ionic Liquid System[J]. Acta Physico-Chimica Sinica, ;2015, 31(5): 843-851. doi: 10.3866/PKU.WHXB201503202 shu

Extraction Mechanism and Selectivity of UO2(NO3)2 in Tributylphosphine Oxide-Ionic Liquid System

  • Received Date: 13 January 2015
    Available Online: 20 March 2015

    Fund Project: 国家自然科学基金(91226112)资助项目 (91226112)

  • The extraction of UO2(NO3)2 from aqueous solution was investigated using trioctylphosphine oxide (TOPO) and tributylphosphine oxide (TBPO) in ionic liquids (ILs) (CnmimNTf2, n=2, 4, 6, 8). A third phase was formed in the TOPO-C2mimNTf2 and TOPO-C4mimNTf2 extraction systems, whereas the extracted species of TBPO-CnmimNTf2 (n=2, 4, 6, 8) were well soluble in all ILs. The influence of the concentrations of the extractant, nitric acid, and salt on the extraction efficiency was also investigated. Adding HNO3 to the aqueous phase decreased the extraction efficiency. The effect of salt indicates the presence of a cation-exchange mechanism in the extraction. The addition of NO3 - in the aqueous phase increased the extraction efficiency of U, which indicates that NO3 - participates in the extraction. Selective extraction research indicates that TBPO-C4mimNTf2 exhibits od selectivity for U at low acid concentration despite the significant extraction efficiency on Zr at high acid concentration. After removing U, TBPO-C4mimNTf2 still showed high selectivity for Nd at low acid concentration. We also confirmed the difference of the extraction mechanisms among TBPO-CnmimNTf2 by quantitative measurement of NNO3 - in ILs, electrospray ionization mass spectroscopy (ESI- MS), and UV spectroscopy. There are two extraction species (UO2(TBPO)3(NO3)+ and UO2(TBPO)32+) and the proportion of UO2(TBPO)3(NO3)+ increases from C2mimNTf2 to C8mimNTf2.

  • 加载中
    1. [1]

      (1) Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Inorg Chem. 1996, 35, 1168. doi: 10.1021/ic951325x

    2. [2]

      (2) Mekkii, S.; Wai, C. M.; Billard, I.; Moutiers, G.; Burt, J.; Yoon, B.; Wang, J. S.; Gaillard, C.; Ouadi, A.; Hesemann, P. Chem. Eur. J. 2006, 12, 1760.

    3. [3]

      (3) Rao, C. J.; Venkatesan, K. A.; Nagarajan, K.; Srinivasan, T. G.; Rao, P. R. V. Electrochim. Acta 2009, 54, 4718. doi: 10.1016/j.electacta.2009.03.074

    4. [4]

      (4) Rao, C. J.; Venkatesan, K. A.; Nagarajan, K.; Srinivasan, T. G.; Rao, P. R. V. Electrochim. Acta 2007, 53, 1911. doi: 10.1016/j.electacta.2007.08.043

    5. [5]

      (5) Wang, S. J.; Ao, Y. Y.; Zhou, H. Y.; Yuan, L. Y.; Peng, J.; Zhai, M. L. Acta Phys. -Chim. Sin. 2014, 30, 1597. [王硕珏, 敖银勇, 周瀚洋, 袁立永, 彭静, 翟茂林. 物理化学学报, 2014, 30, 1597.] doi: 10.3866/PKU.WHXB201406271

    6. [6]

      (6) Yuan, L. Y.; Xu, C.; Peng, J.; Xu, L.; Zhai, M. L.; Li, J. Q.; Wei, G. S.; Shen, X. H. Dalton Trans. 2009, 38, 7873.

    7. [7]

      (7) Xu, C.; Shen, X. H.; Chen, Q. D.; Gao, H. C. Sci. China-Chem. 2009, 52, 1858. doi: 10.1007/s11426-009-0268-8

    8. [8]

      (8) Xu, C.; Yuan, L. Y.; Shen, X. H.; Zhai, M. L. Dalton Trans. 2010, 39, 3897. doi: 10.1039/b925594j

    9. [9]

      (9) Sun, T. X.; Wang, Z. M.; Shen, X. H. Inorg. Chim. Acta 2012, 390, 8. doi: 10.1016/j.ica.2012.04.005

    10. [10]

      (10) Gao, S.; Sun, T.; Chen, Q.; Shen, X. J. Hazard. Mater. 2013, 263, 562. doi: 10.1016/j.jhazmat.2013.10.014

    11. [11]

      (11) Sun, T. X. Application of Ionic Liquids in the Extraction of Sr, Cs, U, and Tc. Ph.D. Dissertation, Peking University, Beijing, 2013. [孙涛祥. 离子液体体系萃取Sr, Cs, U 和Tc 等元素的研究[D]. 北京: 北京大学, 2013.]

    12. [12]

      (12) Sun, T. X.; Shen, X. H.; Chen, Q. D. Sci. China-Chem. 2013, 56, 782. doi: 10.1007/s11426-013-4859-z

    13. [13]

      (13) Sun, T. X.; Shen, X. H.; Chen, Q. D.; Ma, J. Y.; Zhang, S.; Huang, Y. Y. Radiat. Phys. Chem. 2013, 83, 74. doi: 10.1016/j.radphyschem.2012.10.004

    14. [14]

      (14) Wu, J. K.; Shen, X. H.; Chen, Q. D. Acta Phys. -Chim. Sin. 2013, 29, 1705. [吴京珂, 沈兴海, 陈庆德. 物理化学学报, 2013, 29, 1705.] doi: 10.3866/PKU.WHXB201306043

    15. [15]

      (15) Giridhar, P.; Venkatesan, K. A.; Srinivasan, T. G.; Rao, P. R. V. J. Radioanal. Nucl. Chem. 2005, 265, 31. doi: 10.1007/s10967-005-0785-7

    16. [16]

      (16) Giridhar, P.; Venkatesan, K. A.; Subramaniam, S.; Srinivasan, T. G.; Rao, P. R. V. J. Alloy. Compd. 2008, 448, 104. doi: 10.1016/j.jallcom.2007.03.115

    17. [17]

      (17) Dietz, M. L.; Stepinski, D. C. Talanta 2008, 75, 598. doi: 10.1016/j.talanta.2007.11.051

    18. [18]

      (18) Wang, J. S.; Sheaff, C. N.; Yoon, B.; Addleman, R. S.; Wai, C. M. Chem. Eur. J. 2009, 15, 4458. doi: 10.1002/chem.v15:17

    19. [19]

      (19) Visser, A. E.; Jensen, M. P.; Laszak, I.; Nash, K. L.; Choppin, G. R.; Rogers, R. D. Inorg. Chem. 2003, 42, 2197. doi: 10.1021/ic026302e

    20. [20]

      (20) Visser, A. E.; Rogers, R. D. J. Solid State Chem. 2003, 171, 109. doi: 10.1016/S0022-4596(02)00193-7

    21. [21]

      (21) Cocalia, V. A.; Jensen, M. P.; Holbrey, J. D.; Spear, S. K.; Stepinski, D. C.; Rogers, R. D. Dalton Trans. 2005, 1966.

    22. [22]

      (22) Shen, Y.; Tan, X.; Wang, L.; Wu, W. Sep. Purif. Technol. 2011, 78, 298. doi: 10.1016/j.seppur.2011.01.042

    23. [23]

      (23) Rout, A.; Venkatesan, K. A.; Srinivasan, T. G.; Rao, P. R. V. J. Hazard. Mater. 2012, 221, 62.

    24. [24]

      (24) Ouadi, A.; Klimchuk, O.; Gaillard, C.; Billard, I. Green Chem. 2007, 9, 1160. doi: 10.1039/b703642f

    25. [25]

      (25) Srncik, M.; Kogelnig, D.; Stojanovic, A.; Koerner, W.; Krachler, R.; Wallner, G. Appl. Radiat. Isot. 2009, 67, 2146. doi: 10.1016/j.apradiso.2009.04.011

    26. [26]

      (26) Bell, T. J.; Ikeda, Y. Dalton Trans. 2011, 40, 10125. doi: 10.1039/c1dt10755k

    27. [27]

      (27) Billard, I.; Ouadi, A.; Jobin, E.; Champion, J.; Gaillard, C.; Georg, S. Solvent Extr. Ion Exch. 2011, 29, 577. doi: 10.1080/07366299.2011.566494

    28. [28]

      (28) Pribylova, G. A. J. Radioanal. Nucl. Chem. 2011, 288, 693. doi: 10.1007/s10967-011-1014-1

    29. [29]

      (29) Bonnaffe-Moity, M.; Ouadi, A.; Mazan, V.; Miroshnichenko, S.; Ternova, D.; Georg, S.; Sypula, M.; Gaillard, C.; Billard, I. Dalton Trans. 2012, 41, 7526. doi: 10.1039/c2dt12421a

    30. [30]

      (30) Panja, S.; Mohapatra, P. K.; Tripathi, S. C.; Gandhi, P. M.; Janardan, P. Sep. Purif. Technol. 2012, 96, 289. doi: 10.1016/j.seppur.2012.06.015

    31. [31]

      (31) Sengupta, A.; Mohapatra, P. K.; Iqbal, M.; Huskens, J.; Verboom, W. Dalton Trans. 2012, 41, 6970. doi: 10.1039/c2dt12364a

    32. [32]

      (32) Quinn, J. E.; Ogden, M. D.; Soldenhoff, K. Solvent Extr. Ion Exch. 2013, 31, 538. doi: 10.1080/07366299.2013.775891

    33. [33]

      (33) Wei, M.; Feng, X. G.; Chen, J. Sep. Sci. Technol. 2013, 48, 741. doi: 10.1080/01496395.2012.707732


  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    6. [6]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    9. [9]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    10. [10]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    14. [14]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    15. [15]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    16. [16]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    17. [17]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    18. [18]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    19. [19]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    20. [20]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

Metrics
  • PDF Downloads(271)
  • Abstract views(370)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return