Citation: PAN Jian-Ming, YANG Wei, SUN Hai-Biao, ZHENG Xiang, LI Guo-Hua. Preparation and Electrocatalytic Activity of Tungsten Carbide-Montmorillonite Composite[J]. Acta Physico-Chimica Sinica, ;2015, 31(5): 998-1006. doi: 10.3866/PKU.WHXB201503191 shu

Preparation and Electrocatalytic Activity of Tungsten Carbide-Montmorillonite Composite

  • Received Date: 24 November 2014
    Available Online: 19 March 2015

    Fund Project: 国家自然科学基金(21173193, 213001154) (21173193, 213001154)

  • The tungsten carbide catalyst is a hot research topic because its catalytic properties are similar to those of platinum. In this paper, a tungsten carbide-montmorillonite (MMT) nanocomposite was fabricated by combining chemical immersion with reduction and carbonization in situ using tungsten hexachloride as the tungsten source and an exfoliated MMT layer as the support. The crystal phase of the sample is composed of monotungsten carbide (WC), bitungsten carbide (W2C), and MMT, and tungsten carbide is distributed on the outer surface of MMT with a granular or lamellar manner. The components of the crystal phase of the sample are related to the reduction and carbonization time during preparation. The microstructure of the sample is related to the ratio of tungsten to MMT in the precursor used to prepare the sample. The electrocatalytic activity of the sample for methanol oxidation was measured by cyclic voltammetry with a three-electrode system in acidic solution. The results show that the electrocatalytic activity of the sample is improved by compositing tungsten carbide on the surface of MMT, and the electrocatalytic activity is similar to that of platinum. After 5 h reduction and carbonization, a precursor with a 4:1 ratio of tungsten to MMT transformed into a sample with 82%and 18% of WC and W2C, respectively (ratio of WC to W2C 4.556). The WC phase forms a uniform loaded layer on the surface of MMT. The electrocatalytic activity of this sample is the highest of the compositions considered. This outline a method to fabricate a tungsten carbide electrocatalyst with similar electrocatalytic activity to platinum.

  • 加载中
    1. [1]

      (1) Levy, R. B.; Stauffer, M. C. Science 1973, 181, 547. doi: 10.1126/science.181.4099.547

    2. [2]

      (2) Zhu, L. Z.; Chen, Y. F.; Zhang, Q. Y. Chin. J. Appl. Chem. 1999, 16 (4), 52. [朱龙章, 陈宇飞, 张庆元. 应用化学, 1999, 16 (4), 52.]

    3. [3]

      (3) Ma, C.A.; Yang, Z.W.; Zhou, Y. H.; Zha, Q. X. Acta Phys. -Chim. Sin. 1990, 6 (5), 622. [马淳安, 杨祖望, 周运鸿, 查全性. 物理化学学报, 1990, 6 (5), 622.] doi: 10.3866/PKU.WHXB19900521

    4. [4]

      (4) Palanker, V. S.; Gajyev, R. A.; Sokolsky, D. V. Electrochim. Acta 1977, 22, 133. doi: 10.1016/0013-4686(77)85025-1

    5. [5]

      (5) Zellner, M. B.; Chen, J. G. Catal. Today 2005, 99, 299. doi: 10.1016/j.cattod.2004.10.004

    6. [6]

      (6) McIntyre, D. R.; Burstein, G. T.; Vossen, A. J. Power Sources 2002, 107, 67. doi: 10.1016/S0378-7753(01)00987-9

    7. [7]

      (7) Chen, Z. Y.; Shi, M. Q.; Ma, C. A.; Chu, Y. Q.; Zhu, A. J. Power Technology 2013, 235, 467. doi: 10.1016/j.powtec.2012.10.013

    8. [8]

      (8) Bosco, J. P.; Sasaki, K.; Sadakane, M.; Ueda, W.; Chen, J. G. Chem. Mater. 2010, 22, 966. doi: 10.1021/cm901855y

    9. [9]

      (9) Cui, X. Z.; Zhou, X. X.; Chen, H. R.; Hua, Z. L.; Wu, H. X.; He, Q. J.; Zhang, L. X.; Shi, J. L. Int. J. Hydrog. Energy 2011, 36, 10513. doi: 10.1016/j.ijhydene.2011.06.050

    10. [10]

      (10) Yan, Y.; Zhang, L.; Qi, X.; Song, H.; Wang, J. Y.; Zhang, H.; Wang, X. Small 2012, 21, 3350.

    11. [11]

      (11) Giordano, C.; Antonietti, M. Nano Today 2011, 6, 366. doi: 10.1016/j.nantod.2011.06.002

    12. [12]

      (12) Shen, P. K.; Yin, S. B.; Li, Z. H.; Chen, C. Electrochim. Acta 2010, 55, 7969. doi: 10.1016/j.electacta.2010.03.025

    13. [13]

      (13) Kumar, A.; Singh, K.; Pandy, O. P. Journal of Refractory Metals and Hard Materials 2011, 29, 555. doi: 10.1016/j.ijrmhm.2011.01.009

    14. [14]

      (14) Reddy, K. M.; Rao, T. N.; Radha, K.; Joardar, J. J. Alloy. Compd. 2010, 494, 404. doi: 10.1016/j.jallcom.2010.01.059

    15. [15]

      (15) Zhou, X. S.; Qiu, Y. J.; Yin, J.; Gao, S. Int. J. Hydrog. Energy 2011, 36, 7398. doi: 10.1016/j.ijhydene.2011.03.081

    16. [16]

      (16) Rahsepar, M.; Pakshir, M.; Nikolaev, P.; Safavi, A.; Palanisamy, K.; Kim, H. Appl. Catal. B-Environ. 2012, 127, 265. doi: 10.1016/j.apcatb.2012.08.032

    17. [17]

      (17) Li, G. H.; Tian, W.; Tang, J. Y.; Ma, C. A. Acta Phys. -Chim. Sin. 2007, 23 (9), 1370. [李国华, 田伟, 汤俊艳, 马淳安. 物理化学学报, 2007, 23 (9), 1370.] doi: 10.3866/PKU.WHXB20070912

    18. [18]

      (18) Zheng, Y. F.; Lu, Y. P.; Mo, W. M.; Li, G. H.; Zhao, N. J. Inorg. Mater. 2010, 25 (11), 1139. [郑遗凡, 陆月萍, 莫卫民, 李国华, 赵娜. 无机材料学报, 2010, 25 (11), 1139.] doi: 10.3724/SP.J.1077.2010.01139

    19. [19]

      (19) Yao, G. X.; Shi, B. B.; Li, G. H.; Zheng, Y. F. Acta Phys. -Chim. Sin. 2010, 26 (5), 1317. [姚国新, 施斌斌, 李国华, 郑遗凡. 物理化学学报, 2010, 26 (5), 1317.] doi: 10.3866/PKU.WHXB20100337

    20. [20]

      (20) Chen, H.; Chen, D.; Xie, W. M.; Zheng, X.; Li, G. H. Acta Phys. -Chim. Sin. 2014, 30 (5), 891. [陈辉, 陈丹, 谢伟淼, 郑翔, 李国华. 物理化学学报, 2014, 30 (5), 891.] doi: 10.3866/PKU.WHXB201402241

    21. [21]

      (21) Tong, D. S.; Xia, H. S.; Zhou, C. H. Chin. J. Catal. 2009, 30 (11), 1070. [童东绅, 夏厚胜, 周春晖. 催化学报, 2009, 30 (11), 1070.]

    22. [22]

      (22) Dharmesh, V.; Kazutoshi, H. Langmuir 2013, 29, 1977. doi: 10.1021/la3044945

    23. [23]

      (23) Zhou, L. M.; Fu, H. Y.; Li, Q.; Chen, H.; Li, R. X.; Li, X. J. Chin. J. Catal. 2010, 31 (6), 695. [周丽梅, 付海燕, 李强, 陈华, 李瑞祥, 李贤均. 催化学报, 2010, 31 (6), 695.]

    24. [24]

      (24) Paek, S. M.; Jang, J. U.; Hwang, S. J.; Choy, J. H. J. Phys. Chem. Solids 2006, 67, 1020. doi: 10.1016/j.jpcs.2006.01.021

    25. [25]

      (25) Gao, F.; Lv, C. F.; Han, J. X.; Li, X. Y.; Wang, Q.; Zhang, J.; Chen, C.; Li, Q.; Sun, X. F.; Zhang, J. C.; Bao, L. R.; Li, X. J. Phys. Chem. C 2011, 115, 21574. doi: 10.1021/jp205021j

    26. [26]

      (26) Zhang, L.; Manthiram, A. Nanostruct. Mater. 1996, 7, 437. doi: 10.1016/0965-9773(96)00015-3

    27. [27]

      (27) Aihara, N.; Tori e, K.; Esumi K. Langmuir 1998, 14, 4945. doi: 10.1021/la980370p

    28. [28]

      (28) Kawabata, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2003, 125, 10486. doi: 10.1021/ja0302578

    29. [29]

      (29) Guo, D. J.; Li, H. L. J. Power Sources 2006, 160 (1), 44. doi: 10.1016/j.jpowsour.2006.01.026

    30. [30]

      (30) Okamoto, H.; Kawamura, G.; Ishikawa, A.; Kudo, T. J. Electrochem. Soc. 1987, 134, 1653. doi: 10.1149/1.2100730

    31. [31]

      (31) Li, G. H.; Chen, D.; Zheng, X.; Xie, W. M.; Chen, Y. Acta Phys. -Chim. Sin. 2012, 28 (9), 2077. [李国华, 陈丹, 郑翔, 谢伟淼, 程嫒. 物理化学学报, 2012, 28 (9), 2077.] doi: 10.3866/PKU.WHXB201206042

    32. [32]

      (32) Calvillo, L.; Celorrio, V.; Moliner, R.; Garcia, A. B.; Camean, I.; Lazaro, M. J. Electrochimica Acta 2013, 102, 19. doi: 10.1016/j.electacta.2013.03.192


  • 加载中
    1. [1]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    2. [2]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    3. [3]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    4. [4]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    5. [5]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    6. [6]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    7. [7]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    8. [8]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    9. [9]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    10. [10]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    11. [11]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    13. [13]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    16. [16]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(268)
  • Abstract views(561)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return