Citation: XIAO Xue-Chun, SHI Wei, NI Zhe-Ming, ZHANG Lian-Yang, XU Jin-Fang. Adsorption of Cinnamaldehyde on Icosahedral Au13 and Pt13 Clusters[J]. Acta Physico-Chimica Sinica, ;2015, 31(5): 885-892. doi: 10.3866/PKU.WHXB201503181 shu

Adsorption of Cinnamaldehyde on Icosahedral Au13 and Pt13 Clusters

  • Received Date: 5 February 2015
    Available Online: 18 March 2015

  • The adsorption behavior of cinnamaldehyde on icosahedral Au13 and Pt13 clusters was investigated by density functional theory with the Perdew-Burke-Ernzerh of generalized gradient approximation (GGA-PBE). When analyzing the adsorption energies and geometrical parameters of different adsorption models, the adsorption energy of cis-cinnamaldehyde was higher than that of trans-cinnamaldehyde for the same cluster. On the Au13 cluster, the most stable adsorption was the C=O and C=C double bond coadsorption model. While on the Pt13 cluster, the most stable adsorption was the C=O double bond adsorption model. Comparison between the Au13 and Pt13 clusters showed that the adsorption capacity of cinnamaldehyde on the Pt13 cluster was higher than on the Au13 cluster. Analyzing the electronic structures of the most stable adsorption configurations of cinnamaldehyde on the Au13 and Pt13 clusters showed that electrons transferred from 2s and 2p orbitals of cinnamaldehyde to the metal clusters. Electrons of metal clusters were also back-donated to the anti-bonding orbitals of the cinnamaldehyde molecule. This collaborative process eventually led to the stable adsorption of cinnamaldehyde on the Au13 and Pt13 clusters. In addition, adsorption of cinnamaldehyde on cluster models was more energetically favorable than on flat models.

  • 
    1. [1]

      (1) Li, X. H.; Zheng, W. L.; Pan, H. Y.; Yu, Y.; Chen, L.; Wu, P. J. Catal. 2013, 300, 9. doi: 10.1016/j.jcat.2012.12.007

    2. [2]

      (2) Trasarti, A. F.; Bertero, N. M.; Apesteguia, C. R.; Marchi, A. J. Appl. Catal. A-Gen. 2014, 475, 282. doi: 10.1016/j.apcata.2014.01.038

    3. [3]

      (3) Kahsar, K. R.; Schwartz, D. K.; Medlin, J.W. J. Am. Chem. Soc. 2014, 136, 520. doi: 10.1021/ja411973p

    4. [4]

      (4) Shang, Y.; Chen, Y.; Shi, Z. B.; Zhang, D. F.; Guo, L. Acta Phys. -Chim. Sin. 2013, 29, 1819. [商旸, 陈阳, 施湛斌, 张东凤, 郭林. 物理化学学报, 2013, 29, 1819.] doi: 10.3866/PKU.WHXB201305281

    5. [5]

      (5) Zhao, J.; Ni, J.; Xu, J. H.; Xu, J. T.; Cen, J.; Li, X. N. Catal. Commun. 2014, 54, 72. doi: 10.1016/j.catcom.2014.05.012

    6. [6]

      (6) Manyar, H. G.; Yang, B.; Daly, H.; Moor, H.; McMonagle, S.; Tao, Y.; Yadav, G. D.; guet, A.; Hu, P.; Hardacre, C. ChemCatChem 2013, 5, 506. doi: 10.1002/cctc.201200447

    7. [7]

      (7) Zhang, L. Y.; Shi, W.; Xia, S. J.; Ni, Z. M. Acta Phys. -Chim. Sin. 2014, 30, 1847. [张连阳, 施炜, 夏盛杰, 倪哲明. 物理化学学报, 2014, 30, 1847.] doi: 10.3866/PKU.WHXB201407141

    8. [8]

      (8) Xu, K.; Feng, J.; Chu, Q.; Zhang, L. L.; Li, W. Y. Acta Phys. -Chim. Sin. 2014, 30, 2063. [徐坤, 冯杰, 褚绮, 张丽丽, 李文英. 物理化学学报, 2014, 30, 2063.] doi: 10.3866/PKU.WHXB201409221

    9. [9]

      (9) Li, Z.; Chen, Z. X.; He, X.; Kang, G. J. J. Chem. Phys. 2010, 132, 184702. doi: 10.1063/1.3407439

    10. [10]

      (10) Sun, K. Q.; Hong, Y. C.; Zhang, G. R.; Xu, B. Q. ACS Catal.2011, 1, 1336. doi: 10.1021/cs200247r

    11. [11]

      (11) Bus, E.; Prins, R.; van Bokhoven, J. A. Catal. Commun. 2007, 8, 1397. doi: 10.1016/j.catcom.2006.11.040

    12. [12]

      (12) Yang, X. F.; Wang, A. Q.; Wang, X. D.; Zhang, T.; Han, K. L.; Li, J. J. Phys. Chem. C 2009, 113, 20918. doi: 10.1021/jp905687g

    13. [13]

      (13) Zeinalipour-Yazdi, C. D.; Willock, D. J.; Machado, A.; Wilson, K.; Lee, A. F. Phys. Chem. Chem. Phys. 2014, 16, 11236.

    14. [14]

      (14) Xia, S.W.; Sha, P. Y.; Zhong, B.W. J. Mol. Catal. 2007, 21, 317. [夏树伟, 沙鹏燕, 钟炳伟. 分子催化, 2007, 21, 317.]

    15. [15]

      (15) Sarip, R. ld Molecular Clusters to Nanoparticles: a Bottomup Approach to Supported Nanoparticles for Heterogeneous Catalysis. Ph. D. Dissertation, University College London, London, 2013.

    16. [16]

      (16) Imaoka, T.; Kitazawa, H.; Chun, W. J.; Omura, S.; Albrecht, K.; Yamamoto, K. J. Am. Chem. Soc. 2013, 135, 13089. doi: 10.1021/ja405922m

    17. [17]

      (17) Larsson, J. A.; Nolan, M.; Greer, J. C. J. Phys. Chem. B 2002, 106, 5931. doi: 10.1021/jp014483k

    18. [18]

      (18) Hakkinen, H.; Yoon, B.; Landman, U.; Li, X.; Zhai, H. J.; Wang, L. S. J. Phys. Chem. A 2003, 107, 6168. doi: 10.1021/jp035437i

    19. [19]

      (19) Hakkinen, H.; Landman, U. Phys. Rev. B 2000, 62, R2287.

    20. [20]

      (20) Hammer, B.; Hansen, L. B.; Norskov, J. K. Phys. Rev. B 1999, 59, 7413. doi: 10.1103/PhysRevB.59.7413

    21. [21]

      (21) Ge, Q.; Jenkins, S. J.; King, D. A. Chem. Phys. Lett. 2000, 327, 125. doi: 10.1016/S0009-2614(00)00850-2

    22. [22]

      (22) Haubrich, J.; Loffreda, D.; Delbecq, F.; Sautet, P.; Krupski, A.; Becker, C.; Wandeltt, K. J. Phys. Chem. C 2009, 113, 13947. doi: 10.1021/jp903473m

    23. [23]

      (23) Piotrowski, M. J.; Piquini, P.; Da Silva, J. L. F. Phys. Rev. B 2010, 81, 155446. doi: 10.1103/PhysRevB.81.155446

    24. [24]

      (24) Michaelian, K.; Rendon, N.; Garzon, I. L. Phys. Rev. B 1999, 60, 2000. doi: 10.1103/PhysRevB.60.2000

    25. [25]

      (25) Apra, E.; Fortunelli, A. J. Phys. Chem. A 2003, 107, 2934. doi: 10.1021/jp0275793

    26. [26]

      (26) Zhao, F. F.; Liu, C.; Wang, P.; Huang, S. P.; Tian, H. P. J. Alloy. Compd. 2013, 577, 669. doi: 10.1016/j.jallcom.2013.06.175

    27. [27]

      (27) Shafai, G.; Hong, S. Y.; Bertino, M.; Rahman, T. S. J. Phys. Chem. C 2009, 113, 12072. doi: 10.1021/jp811200e

    28. [28]

      (28) Delbecq, F.; Sautet, P. J. Catal. 2002, 211, 398. doi: 10.1016/S0021-9517(02)93744-9

    29. [29]

      (29) Xiao, X. C.; Shi, W.; Ni, Z. M. Acta Phys. -Chim. Sin. 2014, 30, 1456. [肖雪春, 施炜, 倪哲明. 物理化学学报, 2014, 30, 1456.] doi: 10.3866/PKU.WHXB201406091

    30. [30]

      (30) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833. doi: 10.1063/1.1740588

    31. [31]

      (31) Pirillo, S.; Lopez-Corra, I.; German, E.; Juan, A. Vacuum 2014, 99, 259. doi: 10.1016/j.vacuum.2013.06.013

    32. [32]

      (32) Ni, X. C. Regulate the CO2 Adsorption on Transition Metal Surface by A1loyillg Effect. Master Dissertation, Zhengzhou University, Zhengzhou, 2011. [聂新闯. 合金效应调控CO2在过渡族金属表面吸附的第一性原理研究[D]. 郑州: 郑州大学, 2011.]

    33. [33]

      (33) Pallassana, V.; Neurock, M. J. Catal. 2000, 191, 301. doi: 10.1006/jcat.1999.2724

    34. [34]

      (34) Morrow, B. H.; Resasco, D. E.; Striolo, A.; Nardelli, M. B. J. Phys. Chem. C 2011, 115, 5637. doi: 10.1021/jp108763f


    1. [1]

      (1) Li, X. H.; Zheng, W. L.; Pan, H. Y.; Yu, Y.; Chen, L.; Wu, P. J. Catal. 2013, 300, 9. doi: 10.1016/j.jcat.2012.12.007

    2. [2]

      (2) Trasarti, A. F.; Bertero, N. M.; Apesteguia, C. R.; Marchi, A. J. Appl. Catal. A-Gen. 2014, 475, 282. doi: 10.1016/j.apcata.2014.01.038

    3. [3]

      (3) Kahsar, K. R.; Schwartz, D. K.; Medlin, J.W. J. Am. Chem. Soc. 2014, 136, 520. doi: 10.1021/ja411973p

    4. [4]

      (4) Shang, Y.; Chen, Y.; Shi, Z. B.; Zhang, D. F.; Guo, L. Acta Phys. -Chim. Sin. 2013, 29, 1819. [商旸, 陈阳, 施湛斌, 张东凤, 郭林. 物理化学学报, 2013, 29, 1819.] doi: 10.3866/PKU.WHXB201305281

    5. [5]

      (5) Zhao, J.; Ni, J.; Xu, J. H.; Xu, J. T.; Cen, J.; Li, X. N. Catal. Commun. 2014, 54, 72. doi: 10.1016/j.catcom.2014.05.012

    6. [6]

      (6) Manyar, H. G.; Yang, B.; Daly, H.; Moor, H.; McMonagle, S.; Tao, Y.; Yadav, G. D.; guet, A.; Hu, P.; Hardacre, C. ChemCatChem 2013, 5, 506. doi: 10.1002/cctc.201200447

    7. [7]

      (7) Zhang, L. Y.; Shi, W.; Xia, S. J.; Ni, Z. M. Acta Phys. -Chim. Sin. 2014, 30, 1847. [张连阳, 施炜, 夏盛杰, 倪哲明. 物理化学学报, 2014, 30, 1847.] doi: 10.3866/PKU.WHXB201407141

    8. [8]

      (8) Xu, K.; Feng, J.; Chu, Q.; Zhang, L. L.; Li, W. Y. Acta Phys. -Chim. Sin. 2014, 30, 2063. [徐坤, 冯杰, 褚绮, 张丽丽, 李文英. 物理化学学报, 2014, 30, 2063.] doi: 10.3866/PKU.WHXB201409221

    9. [9]

      (9) Li, Z.; Chen, Z. X.; He, X.; Kang, G. J. J. Chem. Phys. 2010, 132, 184702. doi: 10.1063/1.3407439

    10. [10]

      (10) Sun, K. Q.; Hong, Y. C.; Zhang, G. R.; Xu, B. Q. ACS Catal.2011, 1, 1336. doi: 10.1021/cs200247r

    11. [11]

      (11) Bus, E.; Prins, R.; van Bokhoven, J. A. Catal. Commun. 2007, 8, 1397. doi: 10.1016/j.catcom.2006.11.040

    12. [12]

      (12) Yang, X. F.; Wang, A. Q.; Wang, X. D.; Zhang, T.; Han, K. L.; Li, J. J. Phys. Chem. C 2009, 113, 20918. doi: 10.1021/jp905687g

    13. [13]

      (13) Zeinalipour-Yazdi, C. D.; Willock, D. J.; Machado, A.; Wilson, K.; Lee, A. F. Phys. Chem. Chem. Phys. 2014, 16, 11236.

    14. [14]

      (14) Xia, S.W.; Sha, P. Y.; Zhong, B.W. J. Mol. Catal. 2007, 21, 317. [夏树伟, 沙鹏燕, 钟炳伟. 分子催化, 2007, 21, 317.]

    15. [15]

      (15) Sarip, R. ld Molecular Clusters to Nanoparticles: a Bottomup Approach to Supported Nanoparticles for Heterogeneous Catalysis. Ph. D. Dissertation, University College London, London, 2013.

    16. [16]

      (16) Imaoka, T.; Kitazawa, H.; Chun, W. J.; Omura, S.; Albrecht, K.; Yamamoto, K. J. Am. Chem. Soc. 2013, 135, 13089. doi: 10.1021/ja405922m

    17. [17]

      (17) Larsson, J. A.; Nolan, M.; Greer, J. C. J. Phys. Chem. B 2002, 106, 5931. doi: 10.1021/jp014483k

    18. [18]

      (18) Hakkinen, H.; Yoon, B.; Landman, U.; Li, X.; Zhai, H. J.; Wang, L. S. J. Phys. Chem. A 2003, 107, 6168. doi: 10.1021/jp035437i

    19. [19]

      (19) Hakkinen, H.; Landman, U. Phys. Rev. B 2000, 62, R2287.

    20. [20]

      (20) Hammer, B.; Hansen, L. B.; Norskov, J. K. Phys. Rev. B 1999, 59, 7413. doi: 10.1103/PhysRevB.59.7413

    21. [21]

      (21) Ge, Q.; Jenkins, S. J.; King, D. A. Chem. Phys. Lett. 2000, 327, 125. doi: 10.1016/S0009-2614(00)00850-2

    22. [22]

      (22) Haubrich, J.; Loffreda, D.; Delbecq, F.; Sautet, P.; Krupski, A.; Becker, C.; Wandeltt, K. J. Phys. Chem. C 2009, 113, 13947. doi: 10.1021/jp903473m

    23. [23]

      (23) Piotrowski, M. J.; Piquini, P.; Da Silva, J. L. F. Phys. Rev. B 2010, 81, 155446. doi: 10.1103/PhysRevB.81.155446

    24. [24]

      (24) Michaelian, K.; Rendon, N.; Garzon, I. L. Phys. Rev. B 1999, 60, 2000. doi: 10.1103/PhysRevB.60.2000

    25. [25]

      (25) Apra, E.; Fortunelli, A. J. Phys. Chem. A 2003, 107, 2934. doi: 10.1021/jp0275793

    26. [26]

      (26) Zhao, F. F.; Liu, C.; Wang, P.; Huang, S. P.; Tian, H. P. J. Alloy. Compd. 2013, 577, 669. doi: 10.1016/j.jallcom.2013.06.175

    27. [27]

      (27) Shafai, G.; Hong, S. Y.; Bertino, M.; Rahman, T. S. J. Phys. Chem. C 2009, 113, 12072. doi: 10.1021/jp811200e

    28. [28]

      (28) Delbecq, F.; Sautet, P. J. Catal. 2002, 211, 398. doi: 10.1016/S0021-9517(02)93744-9

    29. [29]

      (29) Xiao, X. C.; Shi, W.; Ni, Z. M. Acta Phys. -Chim. Sin. 2014, 30, 1456. [肖雪春, 施炜, 倪哲明. 物理化学学报, 2014, 30, 1456.] doi: 10.3866/PKU.WHXB201406091

    30. [30]

      (30) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833. doi: 10.1063/1.1740588

    31. [31]

      (31) Pirillo, S.; Lopez-Corra, I.; German, E.; Juan, A. Vacuum 2014, 99, 259. doi: 10.1016/j.vacuum.2013.06.013

    32. [32]

      (32) Ni, X. C. Regulate the CO2 Adsorption on Transition Metal Surface by A1loyillg Effect. Master Dissertation, Zhengzhou University, Zhengzhou, 2011. [聂新闯. 合金效应调控CO2在过渡族金属表面吸附的第一性原理研究[D]. 郑州: 郑州大学, 2011.]

    33. [33]

      (33) Pallassana, V.; Neurock, M. J. Catal. 2000, 191, 301. doi: 10.1006/jcat.1999.2724

    34. [34]

      (34) Morrow, B. H.; Resasco, D. E.; Striolo, A.; Nardelli, M. B. J. Phys. Chem. C 2011, 115, 5637. doi: 10.1021/jp108763f


  • 加载中
    1. [1]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    8. [8]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    10. [10]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    13. [13]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    14. [14]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    15. [15]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    16. [16]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    17. [17]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    18. [18]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(276)
  • Abstract views(512)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return