Citation:
MA Hao, LONG Jin-Xing, WANG Fu-Rong, WANG Le-Fu, LI Xue-Hui. Conversion of Cellulose to Butyl Levulinate in Bio-Butanol Medium Catalyzed by Acidic Ionic Liquids[J]. Acta Physico-Chimica Sinica,
;2015, 31(5): 973-979.
doi:
10.3866/PKU.WHXB201503171
-
Butyl levulinate (BL) is one of the most important biochemicals derived from cellulose, and it is of particular interest in industrial applications. Efficient synthesis of BL from cellulose in bio-butanol (bio-BuOH) medium has been investigated in the presence of acidic SO3H-functionalized ionic liquid (SFIL) catalysts. The results showed that the acid strength of the SFILs, catalyst dosage, reaction temperature, reaction time, and solvent composition significantly affected the conversion of cellulose and the yield of the target products. Using the strongest acidic SFIL 1- (4-sulfobutyl)-3-methylimidazolium hydrosulfate ([C4H8SO3Hmim]HSO4) as the catalyst, 98.4% of cellulose could be converted into 31.1% of BL accompanied with 33.4%, 20.6%, and 23.8% of butyl formate (BF), water soluble products (WSPs), and biofuel (Biof), respectively, under the optimized conditions. This catalytic system was water-tolerant, and the addition of 0.2 mL water did not significantly decrease its ability for conversion of cellulose. Furthermore, this acidic SFIL catalyst could be recycled up to six consecutive times without loss of catalytic activity.
-
-
-
[1]
(1) Gallezot, P. Chem. Soc. Rev. 2012, 41 (4), 1538. doi: 10.1039/ C1CS15147A
-
[2]
(2) Christensen, E.; Williams, A.; Paul, S.; Burton, S.; McCormick, R. L. Energ. Fuel. 2011, 25 (11), 5422. doi: 10.1021/ef201229j
-
[3]
(3) Du, X. L.; Bi, Q. Y.; Liu, Y. M.; Cao, Y.; Fan, K. N. ChemSusChem 2011, 4 (12), 183.
-
[4]
(4) Démolis, A.; Essayem, N.; Rataboul, F. ACS Sustain. Chem. Eng. 2014, 2 (6), 1338. doi: 10.1021/sc500082n
-
[5]
(5) Bozell, J. J.; Petersen, G. R. Green Chem. 2010, 12 (4), 539.
-
[6]
(6) Rackemann, D.W.; Doherty, W. O. S. Biofuel. Bioprod. Bior. 2011, 5 (2), 198. doi: 10.1002/bbb.v5.2
-
[7]
(7) Qureshi, N.; Ezeji, T. C. Biofuel. Bioprod. Bior. 2008, 2 (4), 319. doi: 10.1002/bbb.v2:4
-
[8]
(8) Durre, P. Biotechnol. J. 2007, 2 (12), 1525.
-
[9]
(9) Sah, P. P. T.; Ma, S.Y. J. Am. Chem. Soc. 1930, 52 (12), 4880. doi: 10.1021/ja01375a033
-
[10]
(10) Bart, H. J.; Reidetschlager, J.; Schatka, K.; Lehmann, A. Ind. Eng. Chem. Res. 1994, 33 (1), 21.
-
[11]
(11) Yadav, G. D.; Borkar, I. V. Ind. Eng. Chem. Res. 2008, 47 (10), 3358. doi: 10.1021/ie800193f
-
[12]
(12) Dharne, S.; Bokade, V. V. J. Nat. Gas Chem. 2011, 20 (1), 18. doi: 10.1016/S1003-9953 (10)60147-8
-
[13]
(13) Maheria, K. C.; Kozinski, J.; Dalai, A. Catal. Lett. 2013, 143 (11), 1220. doi: 10.1007/s10562-013-1041-3
-
[14]
(14) Zhang, Z.; Dong, K.; Zhao, Z. ChemSusChem 2011, 4 (1), 112.
-
[15]
(15) Wang, G.; Zhang, Z.; Song, L. Green Chem. 2014, 16 (3), 1436. doi: 10.1039/C3GC41693C
-
[16]
(16) Cara, P. D.; Ciriminna, R.; Shiju, N. R.; Rothenberg, G.; Pagliaro, M. ChemSusChem 2014, 7 (3), 835. doi: 10.1002/cssc.201301027
-
[17]
(17) Bianchi, D.; Romano, A. M. Process for the Production of Esters of Levulinic Acid from Biomasses. US Patent Appl.13/000498, 2009.
-
[18]
(18) Hishikawa, Y.; Yamaguchi, M.; Kubo, S.; Yamada, T. J. Wood Sci. 2013, 59 (2), 179.
-
[19]
(19) Wu, Y.; Fu, Z.; Yin, D.; Xu, Q.; Liu, F.; Lu, C.; Mao, L. Green Chem. 2010, 12 (4), 696. doi: 10.1039/b917807d
-
[20]
(20) Kobayashi, H.; Ohta, H.; Fukuoka, A. Catal. Sci. Technol. 2012, 2 (5), 869. doi: 10.1039/c2cy00500j
-
[21]
(21) Wang, J. X.; Wu, Q.; Li, H. S.; Zhen, B. Chem. Ind. Eng. Prog. 2008, 27 (10), 1574. [王敬娴, 吴芹, 黎汉生, 甄彬. 化工进展, 2008, 27 (10), 1574.]
-
[22]
(22) Taheri, A.; Liu, C.; Lai, B.; Cheng, C.; Pan, X.; Gu, Y. Green Chem. 2014, 16 (8), 3715. doi: 10.1039/C4GC00840E
-
[23]
(23) He, Z. C.; Wu, Z. M.; Li, Y. F.; Wang, Q.; Pan, L. S.; Liu, Y. J. J. Mol. Catal. 2014, 28 (6), 535. [何志成, 吴志民, 李勇飞, 王庆, 潘浪胜, 刘跃进. 分子催化, 2014, 28 (6), 535.]
-
[24]
(24) Tao, F.; Song, H.; Chou, L. Bioresour. Technol. 2011, 102, 9000. doi: 10.1016/j.biortech.2011.06.067
-
[25]
(25) Ren, H.; Zhou, Y.; Liu, L. Bioresour. Technol. 2013, 129, 616. doi: 10.1016/j.biortech.2012.12.132
-
[26]
(26) Long, J. X.; Guo, B.; Li, X. H.; Wang, F. R.; Wang, L. F. Acta Phys. -Chim. Sin. 2011, 27 (5), 995. [龙金星, 郭斌, 李雪辉, 王芙蓉, 王乐夫. 物理化学学报, 2011, 27 (5), 995.] doi: 10.3866/PKU.WHXB20110506
-
[27]
(27) Long, J.; Guo, B.; Li, X.; Jiang, Y.; Wang, F.; Tsang, S. C.; Wang, L.; Yu, K. M. K. Green Chem. 2011, 13 (9), 2334. doi: 10.1039/c1gc15597k
-
[28]
(28) Long, J.; Guo, B.; Teng, J.; Yu, Y.; Wang, L.; Li, X. Bioresour. Technol. 2011, 102, 10114. doi: 10.1016/j.biortech.2011.08.043
-
[29]
(29) Long, J.; Li, X.; Guo, B.; Wang, F.; Yu, Y.; Wang, L. Green Chem. 2012, 14 (7), 1935. doi: 10.1039/c2gc35105f
-
[30]
(30) Guo, B.; Long, J. X.; Wang, F. R.; Wang, L. F.; Li, X. H. J. Ind. Eng. Chem. 2012, 63 (8), 2425. [郭斌, 龙金星, 王芙蓉, 王乐夫, 李雪辉. 化工学报, 2012, 63 (8), 2425.]
-
[31]
(31) Cole, A. C.; Jensen, J. L.; Ntai, I.; Tran, K. L. T.; Weaver, K. J.; Forbes, D. C.; Davis, J. H. J. Am. Chem. Soc. 2002, 124 (21), 5962. doi: 10.1021/ja026290w
-
[32]
(32) Garves, K. J. Wood Chem. Technol. 1988, 8 (1), 121.
-
[33]
(33) Peng, L.; Lin, L.; Li, H.; Yang, Q. Appl. Energ. 2011, 88 (12), 4590. doi: 10.1016/j.apenergy.2011.05.049
-
[34]
(34) Dora, S.; Bhaskar, T.; Singh, R.; Naik, D. V.; Adhikari, D. K. Bioresour. Technol. 2012, 120, 318. doi: 10.1016/j.biortech.2012.06.036
-
[35]
(35) Hu, X.; Lievens, C.; Larcher, A.; Li, C. Z. Bioresour. Technol. 2011, 102, 10104. doi: 10.1016/j.biortech.2011.08.040
-
[36]
(36) Lu, Z.; Zheng, H.; Fan, L.; Liao, Y.; Ding, B.; Huang, B. Bioresour. Technol. 2013, 142, 579. doi: 10.1016/j. biortech.2013.05.091
-
[37]
(37) Hausser, N.; Marinkovic, S.; Estrine, B. Cellulose 2013, 20 (5), 2179. doi: 10.1007/s10570-013-9990-7
-
[38]
(38) Nel, R. J.; de Klerk, A. Ind. Eng. Chem. Res. 2009, 48 (11), 5230. doi: 10.1021/ie801930r
-
[39]
(39) Stephenson, R.; Stuart, J. J. Chem. Eng. Data 1986, 31 (1), 56. doi: 10.1021/je00043a019
-
[40]
(40) Valley, R. B. Text. Res. J. 1955, 25 (11), 930. doi: 10.1177/004051755502501104
-
[41]
(41) Deng, W.; Liu, M.; Zhang, Q.; Tan, X.; Wang, Y. Chem. Commun. 2010, 46 (15), 2668. doi: 10.1039/b925723c
-
[42]
(42) Mascal, M.; Nikitin, E. B. ChemSusChem 2010, 3 (12), 1349. doi: 10.1002/cssc.201000326
-
[1]
-
-
-
[1]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[2]
Jinghua Wang , Yanxin Yu , Yanbiao Ren , Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057
-
[3]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[4]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[5]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[6]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[7]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[8]
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117
-
[9]
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
-
[10]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[11]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[12]
Bingliang Li , Yuying Han , Dianyang Li , Dandan Liu , Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070
-
[13]
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
-
[14]
Jiaojiao Yu , Bo Sun , Na Li , Cong Wen , Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177
-
[15]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[16]
Ying Zhang , Fang Ge , Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104
-
[17]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[18]
Lirui Shen , Kun Liu , Ying Yang , Dongwan Li , Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035
-
[19]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[20]
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
-
[1]
Metrics
- PDF Downloads(325)
- Abstract views(581)
- HTML views(4)