Citation: MA Hao, LONG Jin-Xing, WANG Fu-Rong, WANG Le-Fu, LI Xue-Hui. Conversion of Cellulose to Butyl Levulinate in Bio-Butanol Medium Catalyzed by Acidic Ionic Liquids[J]. Acta Physico-Chimica Sinica, ;2015, 31(5): 973-979. doi: 10.3866/PKU.WHXB201503171 shu

Conversion of Cellulose to Butyl Levulinate in Bio-Butanol Medium Catalyzed by Acidic Ionic Liquids

  • Received Date: 20 January 2015
    Available Online: 17 March 2015

    Fund Project: 国家自然科学基金(21336002, 21276094) (21336002, 21276094)教育部博士点基金(20130172110043)资助项目 (20130172110043)

  • Butyl levulinate (BL) is one of the most important biochemicals derived from cellulose, and it is of particular interest in industrial applications. Efficient synthesis of BL from cellulose in bio-butanol (bio-BuOH) medium has been investigated in the presence of acidic SO3H-functionalized ionic liquid (SFIL) catalysts. The results showed that the acid strength of the SFILs, catalyst dosage, reaction temperature, reaction time, and solvent composition significantly affected the conversion of cellulose and the yield of the target products. Using the strongest acidic SFIL 1- (4-sulfobutyl)-3-methylimidazolium hydrosulfate ([C4H8SO3Hmim]HSO4) as the catalyst, 98.4% of cellulose could be converted into 31.1% of BL accompanied with 33.4%, 20.6%, and 23.8% of butyl formate (BF), water soluble products (WSPs), and biofuel (Biof), respectively, under the optimized conditions. This catalytic system was water-tolerant, and the addition of 0.2 mL water did not significantly decrease its ability for conversion of cellulose. Furthermore, this acidic SFIL catalyst could be recycled up to six consecutive times without loss of catalytic activity.

  • 加载中
    1. [1]

      (1) Gallezot, P. Chem. Soc. Rev. 2012, 41 (4), 1538. doi: 10.1039/ C1CS15147A

    2. [2]

      (2) Christensen, E.; Williams, A.; Paul, S.; Burton, S.; McCormick, R. L. Energ. Fuel. 2011, 25 (11), 5422. doi: 10.1021/ef201229j

    3. [3]

      (3) Du, X. L.; Bi, Q. Y.; Liu, Y. M.; Cao, Y.; Fan, K. N. ChemSusChem 2011, 4 (12), 183.

    4. [4]

      (4) Démolis, A.; Essayem, N.; Rataboul, F. ACS Sustain. Chem. Eng. 2014, 2 (6), 1338. doi: 10.1021/sc500082n

    5. [5]

      (5) Bozell, J. J.; Petersen, G. R. Green Chem. 2010, 12 (4), 539.

    6. [6]

      (6) Rackemann, D.W.; Doherty, W. O. S. Biofuel. Bioprod. Bior. 2011, 5 (2), 198. doi: 10.1002/bbb.v5.2

    7. [7]

      (7) Qureshi, N.; Ezeji, T. C. Biofuel. Bioprod. Bior. 2008, 2 (4), 319. doi: 10.1002/bbb.v2:4

    8. [8]

      (8) Durre, P. Biotechnol. J. 2007, 2 (12), 1525.

    9. [9]

      (9) Sah, P. P. T.; Ma, S.Y. J. Am. Chem. Soc. 1930, 52 (12), 4880. doi: 10.1021/ja01375a033

    10. [10]

      (10) Bart, H. J.; Reidetschlager, J.; Schatka, K.; Lehmann, A. Ind. Eng. Chem. Res. 1994, 33 (1), 21.

    11. [11]

      (11) Yadav, G. D.; Borkar, I. V. Ind. Eng. Chem. Res. 2008, 47 (10), 3358. doi: 10.1021/ie800193f

    12. [12]

      (12) Dharne, S.; Bokade, V. V. J. Nat. Gas Chem. 2011, 20 (1), 18. doi: 10.1016/S1003-9953 (10)60147-8

    13. [13]

      (13) Maheria, K. C.; Kozinski, J.; Dalai, A. Catal. Lett. 2013, 143 (11), 1220. doi: 10.1007/s10562-013-1041-3

    14. [14]

      (14) Zhang, Z.; Dong, K.; Zhao, Z. ChemSusChem 2011, 4 (1), 112.

    15. [15]

      (15) Wang, G.; Zhang, Z.; Song, L. Green Chem. 2014, 16 (3), 1436. doi: 10.1039/C3GC41693C

    16. [16]

      (16) Cara, P. D.; Ciriminna, R.; Shiju, N. R.; Rothenberg, G.; Pagliaro, M. ChemSusChem 2014, 7 (3), 835. doi: 10.1002/cssc.201301027

    17. [17]

      (17) Bianchi, D.; Romano, A. M. Process for the Production of Esters of Levulinic Acid from Biomasses. US Patent Appl.13/000498, 2009.

    18. [18]

      (18) Hishikawa, Y.; Yamaguchi, M.; Kubo, S.; Yamada, T. J. Wood Sci. 2013, 59 (2), 179.

    19. [19]

      (19) Wu, Y.; Fu, Z.; Yin, D.; Xu, Q.; Liu, F.; Lu, C.; Mao, L. Green Chem. 2010, 12 (4), 696. doi: 10.1039/b917807d

    20. [20]

      (20) Kobayashi, H.; Ohta, H.; Fukuoka, A. Catal. Sci. Technol. 2012, 2 (5), 869. doi: 10.1039/c2cy00500j

    21. [21]

      (21) Wang, J. X.; Wu, Q.; Li, H. S.; Zhen, B. Chem. Ind. Eng. Prog. 2008, 27 (10), 1574. [王敬娴, 吴芹, 黎汉生, 甄彬. 化工进展, 2008, 27 (10), 1574.]

    22. [22]

      (22) Taheri, A.; Liu, C.; Lai, B.; Cheng, C.; Pan, X.; Gu, Y. Green Chem. 2014, 16 (8), 3715. doi: 10.1039/C4GC00840E

    23. [23]

      (23) He, Z. C.; Wu, Z. M.; Li, Y. F.; Wang, Q.; Pan, L. S.; Liu, Y. J. J. Mol. Catal. 2014, 28 (6), 535. [何志成, 吴志民, 李勇飞, 王庆, 潘浪胜, 刘跃进. 分子催化, 2014, 28 (6), 535.]

    24. [24]

      (24) Tao, F.; Song, H.; Chou, L. Bioresour. Technol. 2011, 102, 9000. doi: 10.1016/j.biortech.2011.06.067

    25. [25]

      (25) Ren, H.; Zhou, Y.; Liu, L. Bioresour. Technol. 2013, 129, 616. doi: 10.1016/j.biortech.2012.12.132

    26. [26]

      (26) Long, J. X.; Guo, B.; Li, X. H.; Wang, F. R.; Wang, L. F. Acta Phys. -Chim. Sin. 2011, 27 (5), 995. [龙金星, 郭斌, 李雪辉, 王芙蓉, 王乐夫. 物理化学学报, 2011, 27 (5), 995.] doi: 10.3866/PKU.WHXB20110506

    27. [27]

      (27) Long, J.; Guo, B.; Li, X.; Jiang, Y.; Wang, F.; Tsang, S. C.; Wang, L.; Yu, K. M. K. Green Chem. 2011, 13 (9), 2334. doi: 10.1039/c1gc15597k

    28. [28]

      (28) Long, J.; Guo, B.; Teng, J.; Yu, Y.; Wang, L.; Li, X. Bioresour. Technol. 2011, 102, 10114. doi: 10.1016/j.biortech.2011.08.043

    29. [29]

      (29) Long, J.; Li, X.; Guo, B.; Wang, F.; Yu, Y.; Wang, L. Green Chem. 2012, 14 (7), 1935. doi: 10.1039/c2gc35105f

    30. [30]

      (30) Guo, B.; Long, J. X.; Wang, F. R.; Wang, L. F.; Li, X. H. J. Ind. Eng. Chem. 2012, 63 (8), 2425. [郭斌, 龙金星, 王芙蓉, 王乐夫, 李雪辉. 化工学报, 2012, 63 (8), 2425.]

    31. [31]

      (31) Cole, A. C.; Jensen, J. L.; Ntai, I.; Tran, K. L. T.; Weaver, K. J.; Forbes, D. C.; Davis, J. H. J. Am. Chem. Soc. 2002, 124 (21), 5962. doi: 10.1021/ja026290w

    32. [32]

      (32) Garves, K. J. Wood Chem. Technol. 1988, 8 (1), 121.

    33. [33]

      (33) Peng, L.; Lin, L.; Li, H.; Yang, Q. Appl. Energ. 2011, 88 (12), 4590. doi: 10.1016/j.apenergy.2011.05.049

    34. [34]

      (34) Dora, S.; Bhaskar, T.; Singh, R.; Naik, D. V.; Adhikari, D. K. Bioresour. Technol. 2012, 120, 318. doi: 10.1016/j.biortech.2012.06.036

    35. [35]

      (35) Hu, X.; Lievens, C.; Larcher, A.; Li, C. Z. Bioresour. Technol. 2011, 102, 10104. doi: 10.1016/j.biortech.2011.08.040

    36. [36]

      (36) Lu, Z.; Zheng, H.; Fan, L.; Liao, Y.; Ding, B.; Huang, B. Bioresour. Technol. 2013, 142, 579. doi: 10.1016/j. biortech.2013.05.091

    37. [37]

      (37) Hausser, N.; Marinkovic, S.; Estrine, B. Cellulose 2013, 20 (5), 2179. doi: 10.1007/s10570-013-9990-7

    38. [38]

      (38) Nel, R. J.; de Klerk, A. Ind. Eng. Chem. Res. 2009, 48 (11), 5230. doi: 10.1021/ie801930r

    39. [39]

      (39) Stephenson, R.; Stuart, J. J. Chem. Eng. Data 1986, 31 (1), 56. doi: 10.1021/je00043a019

    40. [40]

      (40) Valley, R. B. Text. Res. J. 1955, 25 (11), 930. doi: 10.1177/004051755502501104

    41. [41]

      (41) Deng, W.; Liu, M.; Zhang, Q.; Tan, X.; Wang, Y. Chem. Commun. 2010, 46 (15), 2668. doi: 10.1039/b925723c

    42. [42]

      (42) Mascal, M.; Nikitin, E. B. ChemSusChem 2010, 3 (12), 1349. doi: 10.1002/cssc.201000326


  • 加载中
    1. [1]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    2. [2]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    3. [3]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    4. [4]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    5. [5]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    8. [8]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    9. [9]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    10. [10]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    12. [12]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    13. [13]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    14. [14]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    15. [15]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    16. [16]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    17. [17]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    18. [18]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    19. [19]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    20. [20]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

Metrics
  • PDF Downloads(325)
  • Abstract views(581)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return