Citation: JIN Huan, WANG Juan, JI Yun, CHEN Mei-Mei, ZHANG Yi, WANG Qi, CONG Yan-Qing. Synthesis of Ta/Al-Fe2O3 Film Electrode and Its Photoelectrocatalytic Performance in Methylene Blue Degradation[J]. Acta Physico-Chimica Sinica, ;2015, 31(5): 955-964. doi: 10.3866/PKU.WHXB201503112
-
A novel visible-light-responsive photoanode (Ta/Al-Fe2O3) was fabricated by co-doping Ta and Al into iron oxide. The properties of the prepared electrodes were examined using X- ray photoelectron spectroscopy (XPS) and ultraviolet-visible (UV-Vis) diffuse reflectance spectroscopy. XPS analysis suggested that the surface chemical environments of Al and O were significantly affected by Ta doping. Photoelectrochemical (PEC), electrocatalytic (EC), and photocatalytic (PC) degradations of methylene blue (MB) were performed using Ta/Al-Fe2O3 and Al-Fe2O3 electrodes as the photoanodes. The results indicated that synergetic effects in PEC enhanced the MB degradation efficiency compared with the individual PC or EC processes. The estimated rate constant for MB degradation on Ta/Al-Fe2O3 was about twice that on Al-Fe2O3 under visible-light irradiation in the PEC process. The greatly improved visible-light activity and film stability indicated that Ta doping was an efficient way to improve the PEC activity of Ta/Al-Fe2O3 films.
-
Keywords:
-
Ta/Al-Fe2O3
, - Photoelectrocatalysis,
- Visible light,
- Methylene blue,
- Degradation
-
-
-
[1]
(1) Guo, Y. F.; Quan, X.; Lu, N.; Zhao, H. M.; Chen, S. Environ. Sci. Technol. 2007, 41 (12), 4422. doi: 10.1021/es062546c
-
[2]
(2) Liu, Z.; Zhang, X.; Nishimoto, S.; Jin, M.; Tryk, D. A.; Murakami, T.; Fujishima, A. J. Phys. Chem. C 2008, 112 (1), 253. doi: 10.1021/jp0772732
-
[3]
(3) Park, H.; Bak, A.; Ahn, Y. Y.; Choi, J.; Hoffmannn, M. R. J. Hazard. Mater. 2012, 211, 47.
-
[4]
(4) Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev. 2010, 110 (11), 6503. doi: 10.1021/cr1001645
-
[5]
(5) Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D.W. Chem. Rev. 1995, 95 (1), 69. doi: 10.1021/cr00033a004
-
[6]
(6) Zhang, Z.; Hossain, M. F.; Takahashi, T. Appl. Catal. B-Environ. 2010, 95 (3-4), 423. doi: 10.1016/j.apcatb.2010.01.022
-
[7]
(7) Seabold, J. A.; Choi, K. S. J. Am. Chem. Soc. 2012, 134 (11), 2186.
-
[8]
(8) Hu, Y. S.; Kleiman-Shwarsctein, A.; Forman, A. J.; Hazen, D.; Park, J. N.; McFarland, E.W. Chem. Mater. 2008, 20 (12), 3803. doi: 10.1021/cm800144q
-
[9]
(9) Lin, Y. J.; Zhou, S.; Sheehan, S.W.; Wang, D.W. J. Am. Chem. Soc. 2011, 133 (8), 2398. doi: 10.1021/ja110741z
-
[10]
(10) Klahr, B.; Gimenez, S.; Fabregat-Santia , F.; Hamann, T.; Bisquert, J. J. Am. Chem. Soc. 2012, 134 (9), 4294. doi: 10.1021/ja210755h
-
[11]
(11) Kennedy, J. H.; Frese, K.W. J . Electrochem. Soc. 1978, 125 (5), 709. doi: 10.1149/1.2131532
-
[12]
(12) Mor, G. K.; Prakasam, H. E.; Varghese, O. K.; Shankar, K.; Grimes, C. A. Nano. Lett. 2007, 7 (8), 2356. doi: 10.1021/nl0710046
-
[13]
(13) Wei, Y. H.; Han, S. B.; Walker, D. A.; Warren, S. C.; Grzybowski, B. A. Chem. Sci. 2012, 3 (4), 1090. doi: 10.1039/c2sc00673a
-
[14]
(14) Zhang, J.; Liu, X. H.; Wang, L.W.; Yang, T. L.; Guo, X. Z.; Wu, S. H.; Wang, S. R.; Zhang, S. M. J. Phys. Chem. C 2011, 115 (13), 5352. doi: 10.1021/jp110421v
-
[15]
(15) Kay, A.; Cesar, I.; Grätzel, M. J. Am. Chem. Soc. 2006, 128 (49), 15714. doi: 10.1021/ja064380l
-
[16]
(16) Aroutiounian, V. M.; Arakelyan, V. M.; Shahnazaryan, G. E.; Stepanyan, G. M.; Turner, J. A.; Khaselev, O. Int. J. Hydrog. Energy 2002, 27 (1), 33. doi: 10.1016/S0360-3199(01)00085-4
-
[17]
(17) Jang, J. S.; Yoon, K. Y.; Xiao, X. Y.; Fan, F. R. F.; Bard, A. J. Chem. Mat. 2009, 21 (20), 4803. doi: 10.1021/cm901056c
-
[18]
(18) Hu, Y. S.; Kleiman-Shwarsctein, A.; Stucky, G. D.; McFarland, E.W. Chem. Commun. 2009, No. 19, 2652.
-
[19]
(19) Sartoretti, C. J.; Alexander, B. D.; Solarska, R.; Rutkowska, W. A.; Augustynski, J.; Cerny, R. J. Phys. Chem. B 2005, 109 (28), 13685. doi: 10.1021/jp051546g
-
[20]
(20) Zhu, L. P.; Bing, N. C.; Wang, L. L.; Jin, H. Y.; Liao, G. H.; Wang, L. J. Dalton Trans. 2012, 41 (10), 2959. doi: 10.1039/c2dt11822j
-
[21]
(21) Zhou, X. M.; Yang, H. C.; Wang, C. X.; Mao, X. B.; Wang, Y. S.; Yang, Y. L.; Liu, G. J. Phys. Chem. C 2010, 114 (40), 17051. doi: 10.1021/jp103816e
-
[22]
(22) Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Surf. Interface Anal. 2004, 36 (12), 1564.
-
[23]
(23) Spray, R. L.; McDonald, K. J.; Choi, K. S. J. Phys. Chem. C 2011, 115 (8), 3497. doi: 10.1021/jp1093433
-
[24]
(24) Diaz, B.; Swiatowska, J.; Maurice, V.; Seyeux, A.; Harkonen, E.; Ritala, M.; Tervakangas, S.; Kolehmainen, J.; Marcus, P. Electrochim. Acta 2013, 90, 232. doi: 10.1016/j.electacta.2012.12.007
-
[25]
(25) Palma, R.; Laureyn, W.; Frederix, F.; Bonroy, K.; Pireaux, J. J.; Borghs, G.; Maes, G. Langmuir 2007, 23 (2), 443. doi: 10.1021/la061951e
-
[26]
(26) Cong, Y. Q.; Chen, M. M.; Xu, T.; Zhang, Y.; Wang, Q. Appl. Catal. B-Environ. 2014, 147, 733. doi: 10.1016/j.apcatb.2013.10.009
-
[27]
(27) Kleiman-Shwarsctein, A.; Hu, Y. S.; Forman, A. J.; Stucky, G. D.; McFarland, E.W. J. Phys. Chem. C 2008, 112 (40), 15900. doi: 10.1021/jp803775j
-
[28]
(28) Liu, H.; Wu, M.; Wu, H. J.; Sun, F. X.; Zheng, Y.; Li, W. Z. Acta Phys. -Chim. Sin. 2001, 17 (3), 286. [刘鸿, 吴鸣, 吴合进, 孙福侠, 郑云, 李文钊. 物理化学学报, 2001, 17 (3), 286.] doi: 10.3866/PKU.WHXB20010322
-
[29]
(29) Zhang, G. K.; Gao, Y. Y.; Zhang, Y. L.; Guo, Y. D. Environ. Sci. Technol. 2010, 44 (16), 6384. doi: 10.1021/es1011093
-
[30]
(30) Dhananjeyan, M. R.; Mielczarski, E.; Thampi, K. R.; Buffat, P.; Bensimon, M.; Kulik, A.; Mielczarski, J.; Kiwi, J. J. Phys. Chem. B 2001, 105 (48), 12046. doi: 10.1021/jp011339q
-
[31]
(31) Saleh, R.; Djaja, N. F. Superlattice Microst. 2014, 74, 217. doi: 10.1016/j.spmi.2014.06.013
-
[32]
(32) Li, G. T.; Wong, K. H.; Zhang, X.W.; Hu, C.; Yu, J. C.; Chan, R. C. Y.; Wong, P. K. Chemosphere 2009, 76 (9), 1185. doi: 10.1016/j.chemosphere.2009.06.027
-
[33]
(33) Li, G. T.; Song, H. Y.; Liu, B. T. Chin. J. Environ. Eng. 2012, 6 (10), 3388. [李国亭, 宋海燕, 刘秉涛. 环境工程学报, 2012, 6 (10), 3388.]
-
[34]
(34) Wu, J. F.; Li, Z.; Li, F. Superlattice Microst. 2013, 54, 146. doi: 10.1016/j.spmi.2012.11.008
-
[35]
(35) Wu, L.; Yu, J. C.; Fu, X. Z. J. Mol. Catal. A-Chem. 2006, 244 (1-2), 25.(1) Guo, Y. F.; Quan, X.; Lu, N.; Zhao, H. M.; Chen, S. Environ. Sci. Technol. 2007, 41 (12), 4422. doi: 10.1021/es062546c
-
[36]
(2) Liu, Z.; Zhang, X.; Nishimoto, S.; Jin, M.; Tryk, D. A.; Murakami, T.; Fujishima, A. J. Phys. Chem. C 2008, 112 (1), 253. doi: 10.1021/jp0772732
-
[37]
(3) Park, H.; Bak, A.; Ahn, Y. Y.; Choi, J.; Hoffmannn, M. R. J. Hazard. Mater. 2012, 211, 47.
-
[38]
(4) Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev. 2010, 110 (11), 6503. doi: 10.1021/cr1001645
-
[39]
(5) Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D.W. Chem. Rev. 1995, 95 (1), 69. doi: 10.1021/cr00033a004
-
[40]
(6) Zhang, Z.; Hossain, M. F.; Takahashi, T. Appl. Catal. B-Environ. 2010, 95 (3-4), 423. doi: 10.1016/j.apcatb.2010.01.022
-
[41]
(7) Seabold, J. A.; Choi, K. S. J. Am. Chem. Soc. 2012, 134 (11), 2186.
-
[42]
(8) Hu, Y. S.; Kleiman-Shwarsctein, A.; Forman, A. J.; Hazen, D.; Park, J. N.; McFarland, E.W. Chem. Mater. 2008, 20 (12), 3803. doi: 10.1021/cm800144q
-
[43]
(9) Lin, Y. J.; Zhou, S.; Sheehan, S.W.; Wang, D.W. J. Am. Chem. Soc. 2011, 133 (8), 2398. doi: 10.1021/ja110741z
-
[44]
(10) Klahr, B.; Gimenez, S.; Fabregat-Santia , F.; Hamann, T.; Bisquert, J. J. Am. Chem. Soc. 2012, 134 (9), 4294. doi: 10.1021/ja210755h
-
[45]
(11) Kennedy, J. H.; Frese, K.W. J . Electrochem. Soc. 1978, 125 (5), 709. doi: 10.1149/1.2131532
-
[46]
(12) Mor, G. K.; Prakasam, H. E.; Varghese, O. K.; Shankar, K.; Grimes, C. A. Nano. Lett. 2007, 7 (8), 2356. doi: 10.1021/nl0710046
-
[47]
(13) Wei, Y. H.; Han, S. B.; Walker, D. A.; Warren, S. C.; Grzybowski, B. A. Chem. Sci. 2012, 3 (4), 1090. doi: 10.1039/c2sc00673a
-
[48]
(14) Zhang, J.; Liu, X. H.; Wang, L.W.; Yang, T. L.; Guo, X. Z.; Wu, S. H.; Wang, S. R.; Zhang, S. M. J. Phys. Chem. C 2011, 115 (13), 5352. doi: 10.1021/jp110421v
-
[49]
(15) Kay, A.; Cesar, I.; Grätzel, M. J. Am. Chem. Soc. 2006, 128 (49), 15714. doi: 10.1021/ja064380l
-
[50]
(16) Aroutiounian, V. M.; Arakelyan, V. M.; Shahnazaryan, G. E.; Stepanyan, G. M.; Turner, J. A.; Khaselev, O. Int. J. Hydrog. Energy 2002, 27 (1), 33. doi: 10.1016/S0360-3199(01)00085-4
-
[51]
(17) Jang, J. S.; Yoon, K. Y.; Xiao, X. Y.; Fan, F. R. F.; Bard, A. J. Chem. Mat. 2009, 21 (20), 4803. doi: 10.1021/cm901056c
-
[52]
(18) Hu, Y. S.; Kleiman-Shwarsctein, A.; Stucky, G. D.; McFarland, E.W. Chem. Commun. 2009, No. 19, 2652.
-
[53]
(19) Sartoretti, C. J.; Alexander, B. D.; Solarska, R.; Rutkowska, W. A.; Augustynski, J.; Cerny, R. J. Phys. Chem. B 2005, 109 (28), 13685. doi: 10.1021/jp051546g
-
[54]
(20) Zhu, L. P.; Bing, N. C.; Wang, L. L.; Jin, H. Y.; Liao, G. H.; Wang, L. J. Dalton Trans. 2012, 41 (10), 2959. doi: 10.1039/c2dt11822j
-
[55]
(21) Zhou, X. M.; Yang, H. C.; Wang, C. X.; Mao, X. B.; Wang, Y. S.; Yang, Y. L.; Liu, G. J. Phys. Chem. C 2010, 114 (40), 17051. doi: 10.1021/jp103816e
-
[56]
(22) Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Surf. Interface Anal. 2004, 36 (12), 1564.
-
[57]
(23) Spray, R. L.; McDonald, K. J.; Choi, K. S. J. Phys. Chem. C 2011, 115 (8), 3497. doi: 10.1021/jp1093433
-
[58]
(24) Diaz, B.; Swiatowska, J.; Maurice, V.; Seyeux, A.; Harkonen, E.; Ritala, M.; Tervakangas, S.; Kolehmainen, J.; Marcus, P. Electrochim. Acta 2013, 90, 232. doi: 10.1016/j.electacta.2012.12.007
-
[59]
(25) Palma, R.; Laureyn, W.; Frederix, F.; Bonroy, K.; Pireaux, J. J.; Borghs, G.; Maes, G. Langmuir 2007, 23 (2), 443. doi: 10.1021/la061951e
-
[60]
(26) Cong, Y. Q.; Chen, M. M.; Xu, T.; Zhang, Y.; Wang, Q. Appl. Catal. B-Environ. 2014, 147, 733. doi: 10.1016/j.apcatb.2013.10.009
-
[61]
(27) Kleiman-Shwarsctein, A.; Hu, Y. S.; Forman, A. J.; Stucky, G. D.; McFarland, E.W. J. Phys. Chem. C 2008, 112 (40), 15900. doi: 10.1021/jp803775j
-
[62]
(28) Liu, H.; Wu, M.; Wu, H. J.; Sun, F. X.; Zheng, Y.; Li, W. Z. Acta Phys. -Chim. Sin. 2001, 17 (3), 286. [刘鸿, 吴鸣, 吴合进, 孙福侠, 郑云, 李文钊. 物理化学学报, 2001, 17 (3), 286.] doi: 10.3866/PKU.WHXB20010322
-
[63]
(29) Zhang, G. K.; Gao, Y. Y.; Zhang, Y. L.; Guo, Y. D. Environ. Sci. Technol. 2010, 44 (16), 6384. doi: 10.1021/es1011093
-
[64]
(30) Dhananjeyan, M. R.; Mielczarski, E.; Thampi, K. R.; Buffat, P.; Bensimon, M.; Kulik, A.; Mielczarski, J.; Kiwi, J. J. Phys. Chem. B 2001, 105 (48), 12046. doi: 10.1021/jp011339q
-
[65]
(31) Saleh, R.; Djaja, N. F. Superlattice Microst. 2014, 74, 217. doi: 10.1016/j.spmi.2014.06.013
-
[66]
(32) Li, G. T.; Wong, K. H.; Zhang, X.W.; Hu, C.; Yu, J. C.; Chan, R. C. Y.; Wong, P. K. Chemosphere 2009, 76 (9), 1185. doi: 10.1016/j.chemosphere.2009.06.027
-
[67]
(33) Li, G. T.; Song, H. Y.; Liu, B. T. Chin. J. Environ. Eng. 2012, 6 (10), 3388. [李国亭, 宋海燕, 刘秉涛. 环境工程学报, 2012, 6 (10), 3388.]
-
[68]
(34) Wu, J. F.; Li, Z.; Li, F. Superlattice Microst. 2013, 54, 146. doi: 10.1016/j.spmi.2012.11.008
-
[69]
(35) Wu, L.; Yu, J. C.; Fu, X. Z. J. Mol. Catal. A-Chem. 2006, 244 (1-2), 25. doi: 10.1016/j.molcata.2005.08.047 doi: 10.1016/j.molcata.2005.08.047
-
[1]
-
-
[1]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[2]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[3]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[4]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[5]
Jie Li , Huida Qian , Deyang Pan , Wenjing Wang , Daliang Zhu , Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076
-
[6]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[7]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[8]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[9]
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
-
[10]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[11]
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
-
[12]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[13]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[14]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[15]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[16]
Lijuan Liu , Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060
-
[17]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[18]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[19]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[20]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[1]
Metrics
- PDF Downloads(260)
- Abstract views(1511)
- HTML views(147)