Citation: TANG Qing-Long, ZHANG Peng, LIU Hai-Feng, YAO Ming-Fa. Quantitative Measurements of Soot Volume Fractions in Diesel Engine Using Laser-Induced Incandescence Method[J]. Acta Physico-Chimica Sinica, ;2015, 31(5): 980-988. doi: 10.3866/PKU.WHXB201503101
-
Laser-induced incandescence (LII) is an optical diagnostic method used to measure the soot volume fraction in a flame. In this paper, the principle of LII and the calibration methods normally used are introduced. Based on two-color LII theory, a quantitative test system for determining the in-cylinder soot volume fraction was established. A dual imaging setup was used, which can achieve multipoint calibration and full field-of-view quantification of soot in a diesel engine chamber. An investigation was carried out on an optical diesel engine with the conditions 1200 r·min-1 and 21 mg fuel injection per cycle, with various injection pressures (60, 100, and 140 MPa). The results show that the natural soot incandescence emerged after the peak rate of combustion heat release. With increasing injection pressure, the duration of natural soot incandescence shortened and the natural soot luminosity decreased. The range of soot volume fractions in the test zone was (0-50)×10-6. The mean soot volume fraction at the initial soot stage, soot peak, and soot oxidation stage were in the ranges (5-9)×10-6, (15-20)×10-6, and (14-16)×10-6, respectively, depending on the injection pressure. With increasing injection pressure, the distribution area of the soot particles increased, the mean soot volume fraction decreased, and the distribution of the soot volume fraction in space tended to be more uniform in combustion flames.
-
-
[1]
(1) Wang, H. Proc. Combust. Inst. 2011, 33, 41. doi: 10.1016/j.proci.2010.09.009
-
[2]
(2) Tree, D. R.; Svensson, K. I. Prog. Energy Combust. Sci. 2007, 33, 272. doi: 10.1016/j.pecs.2006.03.002
-
[3]
(3) Reitz, R. D. Combust. Flame 2013, 160, 1. doi: 10.1016/j.combustflame.2012.11.002
-
[4]
(4) Liu, H. F.; Huo, M.; Liu, Y.; Wang, X.; Wang, H.; Yao, M. F.; Lee, C. F. Fuel 2014, 133, 317.
-
[5]
(5) Pang, B.; Xie, M. Z.; Jia, M.; Liu, Y. D. Acta Phys. -Chim. Sin. 2013, 29, 2523. [庞斌, 解茂昭, 贾明, 刘耀东. 物理化学学报, 2013, 29, 2523.] doi: 10.3866/PKU.WHXB201310161
-
[6]
(6) Zhao, H.; Ladommatos, N. Prog. Energy. Combust. Sci. 1998, 24, 221. doi: 10.1016/S0360-1285(97)00033-6
-
[7]
(7) Melton, L. A. Appl. Opt. 1984, 23, 2201. doi: 10.1364/AO.23.002201
-
[8]
(8) Bobba, M. K.; Musculus, M. P. B. Combust. Flame 2012, 159, 832. doi: 10.1016/j.combustflame.2011.07.017
-
[9]
(9) Menkiel, B.; Donkerbroek, A.; Uitz, R.; Cracknell, R.; Ganippa, L. Fuel 2014, 118, 406. doi: 10.1016/j.fuel.2013.10.074
-
[10]
(10) Aronsson, U.; Chartier, C.; Andersson, O.; Johansson, B.; Sjöholm, J.; Wellander, R.; Richter, M.; Alden, M.; Miles, P. C. Analysis of EGR Effects on the Soot Distribution in a Heavy Duty Diesel Engine using Time-Resolved Laser Induced Incandescence. SAE Paper 2010-01-2104, 2010.
-
[11]
(11) Dec, J. E.; Zur Loye, A. O.; Siebers, D. L. Soot Distribution in a D.I. Diesel Engine Using 2-D Laser-Induced Incandescence Imaging. SAE Tech. Pap. Ser. 1991, 910224.
-
[12]
(12) Dec, J. E. A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging. SAE Tech. Pap. Ser. 1997, 970873.
-
[13]
(13) Wiltafsky, G.; Stolz, W.; Köhler, J.; Espey, C. The Quantification of Laser-Induced Incandescence (LII) for Planar Time Resolved Measurements of the Soot Volume Fraction in a Combusting Diesel Jet. SAE Tech. Pap. Ser. 1996, 961200.
-
[14]
(14) Pinson, J. A.; Ni, T.; Litzinger, T. A. Quantitative Imaging Study of the Effects of Intake Air Temperature on Soot Evolution in an Optically-Accessible D.I. Diesel Engine. SAE Tech. Pap. Ser. 1994, 942044.
-
[15]
(15) Ni, T.; Pinson, J. A.; Gupta, S.; Santoro, R. J. Appl. Opt. 1995, 34, 7083. doi: 10.1364/AO.34.007083
-
[16]
(16) Tran, M. K.; Rankin, D. D.; Pham, T. K. Combust. Flame 2012, 159, 2181. doi: 10.1016/j.combustflame.2012.01.008
-
[17]
(17) Cruz, A. P.; Dumas, J. P; Bruneaux, G. Two-Dimensional In- Cylinder Soot Volume Fractions in Diesel Low Temperature Combustion Mode. SAE Tech. Pap. Ser. 2011, 2011-01-1390.
-
[18]
(18) Francqueville, L.D.; Bruneaux, G.; Thirouard, B. Soot Volume Fraction Measurements in a Gasoline Direct Injection Engine by Combined Laser Induced Incandescence and Laser Extinction Method. SAE Tech. Pap. Ser. 2010, 2010-01-0346.
-
[19]
(19) Zheng, L.; Ma, X.; Wang, Z.; Wang, J. X. Fuel 2015, 139, 365. doi: 10.1016/j.fuel.2014.09.009
-
[20]
(20) Snelling, D. R.; Smallwood, G. J.; Gulder, O. L. Absolute Intensity Measurements in Laser Induced Incandescence. U. S. Patent 6 154 277, 2000.
-
[21]
(21) Snelling, D. R.; Smallwood, G. J.; Liu, F. S. Appl. Opt. 2005, 44, 6773. doi: 10.1364/AO.44.006773
-
[22]
(22) Yue, Z. Y.; Zhang, P.; Chen, B. L.; Liu, H. F.; Zheng, Z. Q.; Yao, M. F. Journal of Combustion Science and Technology 2013, 19, 434. [岳宗宇, 张鹏, 陈贝凌, 刘海峰, 郑尊清, 尧命发. 燃烧科学与技术, 2013, 19, 434.]
-
[23]
(23) Zhang, P.; Liu, H. F.; Chen, B. L.; Tang, Q. L.; Yao, M. F. Acta Phys. -Chim. Sin. 2015, 31, 32. [张鹏, 刘海峰, 陈贝凌, 唐青龙, 尧命发. 物理化学学报, 2015, 31, 32.] doi: 10.3866/PKU.WHXB201411051
-
[24]
(24) Schulz, C.; Kock, B. F.; Hofmann, M.; Michelsen, H.; Will, S.; Bougie, B.; Suntz, R.; Smallwood, G. Appl. Phys. B 2006, 83, 333.
-
[25]
(25) Liu, F.; He, X.; Ma, X.; Zhang, Q.; Thomson, M. J.; Guo, H.; Smallwood, G. J.; Shuai, S.; Wang, J. Combust. Flame 2011, 158, 547. doi: 10.1016/j.combustflame.2010.10.005
-
[26]
(26) He, X.; Ma, X.; Wang, J. X. Journal of Combustion Science and Technology 2009, 15 (4), 344. [何旭, 马骁, 王建昕. 燃烧科学与技术, 2009, 15 (4), 344.]
-
[27]
(27) Boiarciuc, A.; Foucher, F.; Rousselle, C. M. Appl. Phys. B 2006, 83, 413. doi: 10.1007/s00340-006-2236-8
-
[28]
(28) Menkiel, B.; Donkerbroek, A.; Uitz, R. Combust. Flame 2012, 159, 2985. doi: 10.1016/j.combustflame.2012.03.008
-
[29]
(29) Musculus, M. P. B.; Singh, S.; Reitz, R. D. Combust. Flame 2008, 153, 216. doi: 10.1016/j.combustflame.2007.10.023
-
[30]
(30) Zhang, J.; Jing, W.; Roberts, W. L.; Fang, T. G. Appl. Energy 2013, 107, 52. doi: 10.1016/j.apenergy.2013.02.023
-
[31]
(31) Singh, S.; Reitz, R. D.; Musculus, M. P. B. 2-Color Thermometry Experiments and High-Speed Imaging of Multi- Mode Diesel Engine Combustion. SAE Tech. Pap. Ser. 2005, 2005-01-3842.
-
[32]
(32) Mueller, C. J.; Martin, G. C. Effects of Oxygenated Compounds on Combustion and Soot Evolution in a DI Diesel Engine: Broadband Natural Luminosity Imaging. SAE Tech. Pap. Ser. 2002, 2002-01-1631.
-
[1]
-
-
[1]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[2]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[3]
Feng Liang , Desheng Li , Yuting Jiang , Jiaxin Dong , Dongcheng Liu , Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009
-
[4]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[5]
Jie Li , Huida Qian , Deyang Pan , Wenjing Wang , Daliang Zhu , Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076
-
[6]
Lei Shu , Zimin Duan , Yushen Kang , Zijian Zhao , Hong Wang , Lihua Zhu , Hui Xiong , Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084
-
[7]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[8]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[9]
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027
-
[10]
Tao Cao , Fang Fang , Nianguang Li , Yinan Zhang , Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098
-
[11]
Ling Bai , Limin Lu , Xiaoqiang Wang , Dongping Wu , Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101
-
[12]
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
-
[13]
Wei Li , Ze Chang , Meihui Yu , Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004
-
[14]
Weitai Wu , Laiying Zhang , Yuan Chun , Liang Qiao , Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031
-
[15]
Laiying Zhang , Weitai Wu , Yiru Wang , Shunliu Deng , Zhaobin Chen , Jiajia Chen , Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032
-
[16]
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
-
[17]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[18]
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
-
[19]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[20]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[1]
Metrics
- PDF Downloads(253)
- Abstract views(422)
- HTML views(7)