Citation: HU Long-Xing, XU Dan-Dan, ZOU Lian-Pei, YUAN Hang, HU Xing. Heterogeneous Fenton Oxidation of Refractory Dye Rhodamine B in Aqueous Solution with Mesoporous Fe/SBA-15[J]. Acta Physico-Chimica Sinica, ;2015, 31(4): 771-782. doi: 10.3866/PKU.WHXB201503023 shu

Heterogeneous Fenton Oxidation of Refractory Dye Rhodamine B in Aqueous Solution with Mesoporous Fe/SBA-15

  • Received Date: 13 November 2014
    Available Online: 2 March 2015

    Fund Project: 上海大学创新研究团队计划项目(IRT 13078)资助 (IRT 13078)

  • An Fe-loaded mesoporous silica SBA-15, Fe/SBA-15, was prepared by incipient wetness impregnation, characterized by X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques and used for heterogeneous Fenton oxidation of dye Rhodamine B (RhB) in aqueous solution. The characterization showed that the Fe/SBA-15 retained a mesoporous structure with a long-range ordered arrangement, reduced pore diameter and surface area, and existed as agglomerates of rod-like crystallites with a mean diameter of 0.6 μm. The Fe species occurred both inside and outside the support pores in the form of α-Fe2O3 crystallites. The removal of RhB in the presence of Fe/SBA-15 and H2O2 was shown to be caused by the synergistic effects of adsorption and catalytic oxidative degradation, and was closely related to Fe/SBA-15 dosage. Removal was almost independent of initial solution pH, with approximately 93% achieved at an Fe/SBA-15 dosage of 0.15 g·L-1, initial RhB concentration of 10.0 mg·L-1, H2O2/Fe3+ molar ratio of 2000:1; initial solution pH of 5.4 and 21 ℃. The Langmuir monolayer adsorption capacity of the Fe/SBA-15 was 99.11 mg·g-1. In addition, Fe/SBA-15 can be easily regenerated by soaking in H2O2 then reused for up to six runs, with RhB removal greater than 80% and Fe leaching below 0.1 mg·L-1 (or 0.6% (mass fraction)) for each run. A removal mechanism for RhB by Fe/SBA-15 and H2O2 was proposed based on the quenching tests, UV-Vis spectra, and gas chromatography-mass spectrometry (GC-MS) analysis. The heterogeneous Fenton catalyst Fe/SBA-15 can be applied to remove nonbiodegradable organics such as dye RhB.

  • 加载中
    1. [1]

      (1) Li, J. J.; Feng J. T.; Yan, W. J. Appl. Polym. Sci. 2013, 128, 3231. doi: 10.1002/app.v128.5

    2. [2]

      (2) Luo, L. R.; Shen, K.; Xu, Q. Y.; Qin, Z.; Wei, W.; ndal, M. A. J. Alloy. Compd. 2013, 558, 73. doi: 10.1016/j.jallcom.2013.01.026

    3. [3]

      (3) Du, L.; Wu, J.; Hu, C.W. Electrochim. Acta 2012, 68, 69. doi: 10.1016/j.electacta.2012.02.030

    4. [4]

      (4) Zhao, X.; Zhu, Y. F. Environ. Sci. Technol. 2006, 40, 3367. doi: 10.1021/es052029e

    5. [5]

      (5) Behnajady, M. A.; Modirshahla, N.; Tabrizi, S. B.; Molanee, S. J. Hazard. Mater. 2008, 152, 381. doi: 10.1016/j.jhazmat.2007.07.019

    6. [6]

      (6) Zhu, L.; Meng, Z. D.; Park, C. Y.; Ghosh, T.; Oh, W. C. Ultrason. Sonochem. 2013, 20, 478. doi: 10.1016/j.ultsonch.2012.08.005

    7. [7]

      (7) Li, W. J.; Li, D. Z.; Meng, S. G.; Chen, W.; Fu, X. Z.; Shao, Y. Environ. Sci. Technol. 2011, 45, 2987. doi: 10.1021/es103041f

    8. [8]

      (8) Bae, S. T.; Shin, H.; Lee, S.; Kim, D.W.; Jung, H. S.; Hong, K. S. Reac. Kinet. Mech. Cat. 2012, 106, 67. doi: 10.1007/s11144-011-0404-2

    9. [9]

      (9) Bai, C. P.; Xiong, X. F.; ng, W. Q.; Feng, D. X.; Xian, M.; Ge, Z. X.; Xu, N. Desalination 2011, 278, 84. doi: 10.1016/j.desal.2011.05.009

    10. [10]

      (10) Machado, E. L.; Dambros, V. S.; Kist, L. T.; Lobo, E. A. A.; Tedesco, S. B.; Moro, C. C. Water Air Soil Pollut. 2012, 223, 1753. doi: 10.1007/s11270-011-0980-9

    11. [11]

      (11) Anipsitakis, G. P.; Dionysiou, D. D. Environ. Sci. Technol. 2003, 37, 4790. doi: 10.1021/es0263792

    12. [12]

      (12) Cheng, M. M.; Ma, W. H.; Li, J.; Huang, Y. P.; Zhao, J. C.; Wen, Y. X.; Xu, Y. M. Environ. Sci. Technol. 2004, 38, 1569. doi:10.1021/es034442x

    13. [13]

      (13) Botas, J. A.; Melero, J. A.; Martínez, F.; Pariente, M. I. Catal. Today 2010, 149, 334. doi: 10.1016/j.cattod.2009.06.014

    14. [14]

      (14) Zhang, S. X.; Zhao, X. L.; Niu, H. Y.; Shi, Y. L.; Cai, Y. Q.; Jiang, G. B. J. Hazard. Mater. 2009, 167, 560. doi: 10.1016/j.jhazmat.2009.01.024

    15. [15]

      (15) Hou, M. F.; Liao, L.; Zhang, W. D.; Tang, X. Y.; Wan, H. F.; Yin, G. C. Chemosphere 2011, 83, 1279. doi: 10.1016/j.chemosphere.2011.03.005

    16. [16]

      (16) Ai, Z. H.; Gao, Z. T.; Zhang, L. Z.; He, W.W.; Yin, J. Y. Environ. Sci. Technol. 2013, 47, 5344. doi: 10.1021/es4005202

    17. [17]

      (17) Xu, L. J.; Wang, J. L. Environ. Sci. Technol. 2012, 46, 10145.

    18. [18]

      (18) Zhang, Y. Y.; Xiong, Y.; Tang, Y. K.; Wang, Y. H. J. Hazard. Mater. 2013, 244-245, 758.

    19. [19]

      (19) Liang, X. L.; He, Z. S.; Zhong, Y. H.; Tan, W.; He, H. P.; Yuan, P.; Zhu, J. X.; Zhang, J. Colloids Surf. A 2013, 435, 28. doi: 10.1016/j.colsurfa.2012.12.038

    20. [20]

      (20) Liou, R. M.; Chen, S. H.; Hung, M. Y.; Hsu, C. S.; Lai, J. Y. Chemosphere 2005, 59, 117. doi: 10.1016/j.chemosphere.2004.09.080

    21. [21]

      (21) Parra, S.; Nadtotechenko, V.; Albers, P.; Kiwi, J. J. Phys. Chem. B 2004, 108, 4439. doi: 10.1021/jp031127o

    22. [22]

      (22) Hassan, H.; Hameed, B. H. Chem. Eng. J. 2011, 171, 912. doi: 10.1016/j.cej.2011.04.040

    23. [23]

      (23) De Leon, M. A.; Sergio, M.; Bussi, J. Reac. Kinet. Mech. Cat. 2013, 110, 101. doi: 10.1007/s11144-013-0593-y

    24. [24]

      (24) Martínez, F.; Pariente, M. I.; Botas, J. A.; Melero, J. A.; Rubalcaba, A. J. Chem. Technol. Biotechnol. 2012, 87, 880. doi: 10.1002/jctb.v87.7

    25. [25]

      (25) Duarte, F. M.; Maldonado-Hódar, F. J.; Madeira, L. M. Appl. Catal. A 2013, 458, 39. doi: 10.1016/j.apcata.2013.03.030

    26. [26]

      (26) Yao, Y. Y.; Wang, L.; Sun, L. J.; Zhu, S.; Huang, Z. F.; Mao, Y. J.; Lu, W. Y.; Chen, W. X. Chem. Eng. Sci. 2013, 101, 424. doi: 10.1016/j.ces.2013.06.009

    27. [27]

      (27) Yaman, Y. C.; Gündüz, G.; Dükkanci, M. Color. Technol. 2013, 129, 69. doi: 10.1111/cote.2013.129.issue-1

    28. [28]

      (28) Sashkina, K. A.; Labko, V. S.; Rudina, N. A.; Parmon, V. N.; Parkhomchuk, E. V. J. Catal. 2013, 299, 44. doi: 10.1016/j.jcat.2012.11.028

    29. [29]

      (29) Kiran, I.; Bekta?, N.; Yatmaz, H. C.; Tekba?, M. Desalin. Water. Treat. 2013, 51, 5768. doi: 10.1080/19443994.2012.759517

    30. [30]

      (30) Calleja, G.; Melero, J. A.; Martínez, F.; Molina, R. Water Res. 2005, 39, 1741. doi: 10.1016/j.watres.2005.02.013

    31. [31]

      (31) Melero, J. A.; Calleja, G.; Martínez, F.; Molina, R.; Pariente, M. I. Chem. Eng. J. 2007, 131, 245. doi: 10.1016/j.cej.2006.12.007

    32. [32]

      (32) Melero, J. A.; Calleja, G.; Martínez, F.; Molina, R. Catal. Commun. 2006, 7, 478. doi: 10.1016/j.catcom.2006.01.008

    33. [33]

      (33) Lim, H.; Lee, J.; Jin, S.; Kim, J.; Yoon, J.; Hyeon, T. Chem. Commun. 2006, 463.

    34. [34]

      (34) kulakrishnan, N.; Pandurangan, A.; Sinha, P. K. J. Chem. Technol. Biot. 2007, 82, 25.

    35. [35]

      (35) Pham, A. L. T.; Lee, C.; Doyle, F. M.; Sedlak, D. L. Environ. Sci. Technol. 2009, 43, 8930. doi: 10.1021/es902296k

    36. [36]

      (36) Xiang, L.; Royer, S.; Zhang, H.; Tatibouët, J. M.; Barrault, J.; Valange, S. J. Hazard. Mater. 2009, 172, 1175. doi: 10.1016/j.jhazmat.2009.07.121

    37. [37]

      (37) Shukla, P.; Wang, S. B.; Sun, H. Q.; Ang, H. M.; Tadé, M. Chem. Eng. J. 2010, 164, 255. doi: 10.1016/j.cej.2010.08.061

    38. [38]

      (38) Mayani, S. V.; Mayani, S. J.; Kim, S.W. Bull. Korean Chem. Soc. 2012, 33, 3009. doi: 10.5012/bkcs.2012.33.9.3009

    39. [39]

      (39) Satishkumar, G.; Landau, M. V.; Buzaglo, T.; Frimet, L.; Ferentz, M.; Vidruk, R.; Wagner, F.; Gal, Y.; Herskowitz, M. Appl. Catal. B 2013, 138-139, 276.

    40. [40]

      (40) Aliyan, H.; Fazaeli, R.; Jalilian, R. Appl. Surf. Sci. 2013, 276, 147. doi: 10.1016/j.apsusc.2013.03.049

    41. [41]

      (41) Huang, H. Y.; Ji, Y. S.; Qiao, Z. F.; Zhao, C. D.; He, J. G.; Zhang, H. X. J. Autom. Methods Manage. Chem. 2010, 7.

    42. [42]

      (42) Wang, H. L.; Tian, H.; Hao, Z. P. J. Environ. Sci. 2012, 24, 536. doi: 10.1016/S1001-0742(11)60800-0

    43. [43]

      (43) Zhong, X.; Royer, S.; Zhang, H.; Huang, Q. Q.; Xiang, L. J.; Valange, S.; Barrault, J. Sep. Purif. Technol. 2011, 80, 163. doi: 10.1016/j.seppur.2011.04.024

    44. [44]

      (44) Martínez, F.; Calleja, G.; Melero, J. A.; Molina, R. Appl. Catal. B 2005, 60, 181. doi: 10.1016/j.apcatb.2005.03.004

    45. [45]

      (45) Lazar. K.; Calleja, G.; Melero, J. A. Stud. Surf. Sci. Catal. 2004, 154, 805. doi: 10.1016/S0167-2991(04)80888-7

    46. [46]

      (46) Munoz, M.; de Pedro, Z. M.; Casas, J. A.; Rodriguez, J. J. Water Res. 2013, 47, 3070. doi: 10.1016/j.watres.2013.03.024

    47. [47]

      (47) Liu, T.; You, H. Reac. Kinet. Mech. Cat. 2013, 109, 233. doi: 10.1007/s11144-012-0534-1

    48. [48]

      (48) Zhao, D. Y.; Huo, Q. S.; Feng, J. L. Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024. doi: 10.1021/ja974025i

    49. [49]

      (49) Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 10712. doi: 10.1021/ja002261e

    50. [50]

      (50) Vassilakis, C.; Pantidou, A.; Psillakis, E.; Kalogerakis, N.; Mantzavinos, D. Water Res. 2004, 38, 3110. doi: 10.1016/j.watres.2004.04.014

    51. [51]

      (51) Marler, B.; Oberhagemann, U.; Vortmann, S.; Gies, H. Microporous Mat. 1996, 6, 375. doi: 10.1016/0927-6513(96)00016-8

    52. [52]

      (52) Kim, D. J.; Pal, M.; Seo, W. S. Microporous Mesoporous Mat. 2013, 180, 32. doi: 10.1016/j.micromeso.2013.06.006

    53. [53]

      (53) Teja, A. S.; Koh, P. Y. Prog. Cryst. Growth Charact. Mater. 2009, 55, 22. doi: 10.1016/j.pcrysgrow.2008.08.003

    54. [54]

      (54) Wang, X. Q.; Ge, H. L.; Jin, H. X.; Cui, Y. J. Microporous Mesoporous Mat. 2005, 86, 335. doi: 10.1016/j.micromeso.2005.07.038

    55. [55]

      (55) Cornu, C.; Bonardet, J. L.; Casale, S.; Davidson, A.; Abramson, S.; André, G.; Porcher, F.; Gr?i?, I.; Tomasic, V.; Vujevic, D.; Koprivanac, N. J. Phys. Chem. C 2012, 116, 3437. doi: 10.1021/jp2038625

    56. [56]

      (56) Tang, H. D.; Lan, G. J.; Zhong, J.; Liu, H. Z.; Li, Y. J. Nat. Gas Chem. 2012, 21, 275. doi: 10.1016/S1003-9953(11)60365-4

    57. [57]

      (57) Navale, S. T.; Khuspe, G. D.; Chougule, M. A.; Patil, V. B.; Polypyrrole. Org. Electron. 2014, 15, 2159. doi: 10.1016/j.orgel.2014.06.019

    58. [58]

      (58) Xu, X. Z.; Chen, S. X.; Wu, Q. H. J. Colloid Interface Sci. 2012, 385, 193. doi: 10.1016/j.jcis.2012.07.013

    59. [59]

      (59) Chang, S. H.; Wang, K. S.; Li, H. C.; Wey, M. Y.; Chou, J. D. J. Hazard. Mater. 2009, 172, 1131. doi: 10.1016/j.jhazmat.2009.07.106

    60. [60]

      (60) Hou, M. F.; Ma, C. X.; Zhang, W. D.; Tang, X. Y.; Fan, Y. N.; Wan, H. F. J. Hazard. Mater. 2011, 186, 1118. doi: 10.1016/j.jhazmat.2010.11.110

    61. [61]

      (61) Zhang, J.; ndal, M. A.; Wei, W.; Zhang, T.; Xu, Q. Y.; Shen, K. J. Alloy. Compd. 2012, 530, 107. doi: 10.1016/j.jallcom.2012.03.104

    62. [62]

      (62) Ma, J. F.; Li, L. Y.; Zou, J.; Kong, Y.; Komarneni, S. Microporous Mesoporous Mat. 2014, 193, 154.

    63. [63]

      (63) Wu, T. X.; Liu, G. M.; Zhao, J. C.; Hidaka, H.; Serpone, N. J. Phys. Chem. B 1998, 102, 5845. doi: 10.1021/jp980922c

    64. [64]

      (64) He, Z.; Yang, S. G.; Ju, Y. M.; Sun, C. J. Environ. Sci. 2009, 21, 268. doi: 10.1016/S1001-0742(08)62262-7

    65. [65]

      (65) Ai, Z. H.; Lu, L. R.; Li, J. P.; Zhang, L. Z.; Qiu, J. R.; Wu, M. H. J. Phys. Chem. C 2007, 111, 4087. doi: 10.1021/jp065559l


  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    7. [7]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    8. [8]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    11. [11]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    12. [12]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    13. [13]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    14. [14]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    15. [15]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    16. [16]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    17. [17]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    20. [20]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

Metrics
  • PDF Downloads(359)
  • Abstract views(794)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return