Citation: ZHAO Shu-Heng, LANG Lin, YIN Xiu-Li, YANG Wen-Shen, WU Chuang-Zhi. TPAOH Template Removal from High-Silica ZSM-5 by Low-Temperature Hydrocracking[J]. Acta Physico-Chimica Sinica, ;2015, 31(4): 793-799. doi: 10.3866/PKU.WHXB201503021
-
Zeolite membranes, especially the MFI-type zeolite membranes, have attracted significant attention for decades because of their special properties. While organic templates such as tetrapropylammonium hydroxide (TPAOH) have typically been used for the synthesis of ZSM-5 zeolite and zeolite membranes, the templates remain trapped in the as-synthesized zeolite crystals. A common method for removing organic templates and generating porous frameworks is calcination; however, during this process, the channel structure may be affected. In particular, for ZSM-5 membranes, membrane defects may be produced and the separation efficiency therefore may decrease to some extent. In this study, the low-temperature hydrocracking of TPAOH in ZSM-5 zeolite crystals was studied under H2/N2, while N2 adsorption, thermogravimetric (TG) analysis, Fourier transform infrared (FTIR) spectroscopy, temperature-programmed desorption of ammonia (NH3-TPD), and Raman spectroscopy were used to characterize zeolite samples. The results show that the organic template in the pores of ZSM-5 can be effectively removed below 350 ℃ by low-temperature hydrocracking. Characterization analyses by BET specific surface area, TG, FTIR, and Raman spectroscopy demonstrated that a reducing atmosphere containing H2 was more conducive to template removal at low temperature than atmospheres of air or N2. The degree of template removal increased with temperature increasing. The BET surface area of the crystal after hydrocracking at 280 ℃ reached 252 m2·g-1, although a small amount of organic residue remained. Furthermore, after hydrocracking at 350 ℃, the BET surface area reached 399m2·g-1, and only trace amount of inorganic carbon residue remained. In addition, the introduction of hydrogen at low temperatures could prevent coke deposits on acid sites and thus ZSM-5 zeolite crystals had greater numbers of acidic sites after low-temperature hydrocracking.
-
-
[1]
(1) Eslava, S.; Urrutia, J.; Busawon, A. N.; Baklanov, M. R.; Iacopi, F.; Aldea, S.; Maex, K.; Martens, J. A.; Kirschhock, C. E. A. J. Am. Chem. Soc. 2008, 130, 17528. doi: 10.1021/ja8066572
-
[2]
(2) Yordanov, I.; Knoerr, R.; DeWaele, V.; Bazin, P.; Thomas, S.; Rivallan, M.; Lakiss, L.; Metzger, T. H.; Mintova, S. J. Phys. Chem. C 2010, 114, 20974. doi: 10.1021/jp105490g
-
[3]
(3) Wang, Z. X.; Yan, W. F.; Tian, D. Y.; Cao, X. J.; Yu, J. H.; Xu, R. R. Acta Phys. -Chim. Sin. 2010, 26, 2044. [王周翔, 闫文付, 田大勇, 曹学静, 于吉红, 徐如人. 物理化学学报, 2010, 26, 2044.] doi: 10.3866/PKU.WHXB20100714
-
[4]
(4) Zhang, Y. F.; Tokay, B.; Funke, H. H.; Falconer, J. L.; Noble, R. D. J. Membr. Sci. 2010, 363, 29. doi: 10.1016/j.memsci.2010.06.054
-
[5]
(5) Yuan, W. H.; Chang, R. R.; Liu, X. C.; Li, L. Acta Phys. -Chim. Sin. 2011, 27, 2493. [袁文辉, 常然然, 刘晓晨, 李莉. 物理化学学报, 2011, 27, 2493.] doi: 10.3866/PKU.WHXB20110917
-
[6]
(6) Gascon, J.; Kapteijn, F.; Zornoza, B.; Sebastián, V.; Casado, C.; Coronas, J. Chem. Mater. 2012, 24, 2829. doi: 10.1021/cm301435j
-
[7]
(7) Hinkle, K. R.; Jameson, C. J.; Murad, S. J. Phys. Chem. C 2014, 118, 23803. doi: 10.1021/jp507155s
-
[8]
(8) Chen, H. L.; Li, Y. S.; Zhu, G. Q.; Yang, W. S. Sci. China Ser. B -Chem. 2009, 52, 579.
-
[9]
(9) Zhong, Y. J.; Xu, X. H.; Xiao, Q.; Jiang, L.; Zhu, W. D.; Ma, C. A. Acta Phys. -Chim. Sin. 2008, 24, 1875. [钟依均, 许晓华, 肖强, 姜丽, 朱伟东, 马淳安. 物理化学学报, 2008, 24, 1875.] doi: 10.3866/PKU.WHXB20081023
-
[10]
(10) Li, X. M.; Yan, Y. S.; Wang, Z. B. Ind. Eng. Chem. Res. 2010, 49, 5933. doi: 10.1021/ie1000136
-
[11]
(11) Lang, L.; Zhang, C.; Yin, X. L.; Wu, C. Z. Prog. Chem. 2011, 23, 1022. [郎林, 张超, 阴秀丽, 吴创之. 化学进展, 2011, 23, 1022.]
-
[12]
(12) Li, X. M.; Wang, Z. B.; Zheng, J.; Shao, S. Q.; Wang, Y. C.; Yan, Y. S. Chin. J. Catal. 2011, 32, 217. [李显明, 王正宝, 郑洁, 邵世群, 王胤超, 严玉山. 催化学报, 2011, 32, 217.] doi: 10.1016/S1872-206 (10)60167-2
-
[13]
(13) Jin, W. Y.; Cheng, D. G.; Chen, F. Q.; Zhan, X. L. Acta Phys. -Chim. Sin. 2013, 29, 139. [金炜阳, 程党国, 陈丰秋, 詹晓力. 物理化学学报, 2013, 29, 139.] doi: 10.3866/PKU. WHXB201210263
-
[14]
(14) Wang, Z.; Yu, T.; Nian, P.; Zhang, Q. C.; Yao, J. K.; Li, S.; Gao, Z. N.; Yue, X. L. Langmuir 2014, 30, 4531. doi: 10.1021/la500115t
-
[15]
(15) Dong, J. H.; Lin, Y. S.; Hu, M. Z. C.; Peascoe, R. A.; Payzant, E. A. Microporous Mesoporous Mat. 2000, 34, 241. doi: 10.1016/S1387-1811(99)00175-4
-
[16]
(16) Zhang, X. F.; Li, B. M.; Wang, J. Q.; Liu, C. H. Petrochem. Technol. 2002, No. 1, 10. [张雄福, 李邦民, 王金渠, 刘长厚.石油化工, 2002, No. 1, 10.]
-
[17]
(17) Wang, C.; Liu, X. F.; Cui, R. L.; Zhang, B. Q. Prog. Chem. 2008, 20, 1860. [王聪, 刘秀凤, 崔瑞利, 张宝泉. 化学进展, 2008, 20, 1860.]
-
[18]
(18) Hong, Z.; Sun, F.; Chen, D. D.; Zhang, C.; Gu, X. H.; Xu, N. P. Int. J. Hydrog. Energy 2013, 38, 8409. doi: 10.1016/j.ijhydene.2013.04.154
-
[19]
(19) Liu, X. F.; Zhang, B. Q.; Lin, Y. S. J. Chin. J. Inorg. Chem. 2008, 24, 1679. [刘秀凤, 张宝泉, 林跃生. 无机化学学报, 2008, 24, 1679.]
-
[20]
(20) Cheng, Y.; Yang, Y. C.; Li, J. S.; Sun, X. Y.; Wang, L. J. Chin. J. Inorg. Chem. 2005, 21, 796. [成岳, 杨宇川, 李健生, 孙秀云, 王连军. 无机化学学报, 2005, 21, 796.]
-
[21]
(21) Kanezashi, M.; O'Brien, J.; Lin, Y. S. J. Membr. Sci. 2006, 286, 213. doi: 10.1016/j.memsci.2006.09.038
-
[22]
(22) Zhang, B. Q.; Wang, C.; Lang, L.; Cui, R. L.; Liu, X. F. Adv. Funct. Mater. 2008, 18, 3434. doi: 10.1002/adfm.v18:21
-
[23]
(23) Jiang, H. Y.; Zhang, B. Q.; Lin, Y. S.; Li, Y. D. Chin. Sci. Bull. 2004, 49, 2133. [蒋海洋, 张宝泉, 林跃生, 李永丹. 科学通报, 2004, 49, 2133.] doi: 10.1007/BF03185778
-
[24]
(24) palakrishnan, S.; Yamaguchi, T.; Nakao, S. J. Membr. Sci. 2006, 274, 102. doi: 10.1016/j.memsci.2005.08.005
-
[25]
(25) Heng, S.; Lau, P. P. S.; Yeung, K. L.; Djafer, M.; Schrotter, J. C. J. Membr. Sci. 2004, 243, 69. doi: 10.1016/j.memsci.2004.05.025
-
[26]
(26) Jirka, I.; Zikánová, A.; Novák, P.; Ko?i?ík, M.; Weber, J.; Pelouchová, H.; ?erňanský, M. Mater. Chem. Phys. 2005, 90, 116. doi: 10.1016/j.matchemphys.2004.10.019
-
[27]
(27) Jareman, F.; Andersson, C.; Hedlund, J. Microporous Mesoporous Mat. 2005, 79, 1. doi: 10.1016/j.micromeso.2004.10.032
-
[28]
(28) Li, Q. H.; Amweg, M. L.; Yee, C. K.; Navrotsky, A.; Parikh, A. N. Microporous Mesoporous Mat. 2005, 87, 45. doi: 10.1016/j.micromeso.2005.07.048
-
[29]
(29) Patarin, J. Angew. Chem. Int. Edit. 2004, 43, 3878.
-
[30]
(30) Xie, L. L.; Li, Q. H.; Yuan, H.; Wang, L. J.; Tian, Z.; Bing, N. C. Acta Chim. Sin. 2008, 66, 2113. [解丽丽, 李庆华, 袁昊, 王利军, 田震, 邴乃慈. 化学学报, 2008, 66, 2113.]
-
[31]
(31) Su, G. X.; Jin, J. S.; Cui, W. G.; Liu, H. T.; Zhang, Z. T. Chin. J. Process Eng. 2012, No. 1, 64. [苏广训, 金君素, 崔文广, 刘洪涛, 张泽廷. 过程工程学报, 2012, No. 1, 64.]
-
[32]
(32) Wang, Y. H.; Tan, J.; Liu, J.; Chen, Y.; Li, X. Y. Acta Chim. Sin. 2010, 68, 2471. [王业红, 谭涓, 刘靖, 陈颖, 李旭影. 化学学报, 2010, 68, 2471.]
-
[33]
(33) Liu, Y. Template Removal from Molecular SievesUsing Cold Plasma. Ph.D. Dissertation, Tianjin University, Tianjin, 2010. [刘媛. 冷等离子体脱除分子筛模板剂研究[D]. 天津: 天津大学, 2010.]
-
[34]
(34) Serrano, D. P.; García, R. A.; Linares, M.; Gil, B. Catal. Today 2012, 179, 91. doi: 10.1016/j.cattod.2011.06.029
-
[35]
(35) Pachtová, O.; Kocirik, M.; Zikánová, A.; Bernauer, B.; Miachon, S.; Dalmon, J. A. Microporous Mesoporous Mat. 2002, 55, 285. doi: 10.1016/S1387-1811(02)00430-4
-
[36]
(36) Mateo, E.; Paniagua, A.; Güell, C.; Coronas, J.; Santamaría, J. Mater. Res. Bull. 2009, 44, 1280. doi: 10.1016/j.materresbull.2009.01.003
-
[37]
(37) Gao, X. T.; Yeh, C. Y.; Angevine, P. Microporous Mesoporous Mat. 2004, 70, 27. doi: 10.1016/j.micromeso.2004.02.014
-
[38]
(38) Liu, X. G.; Xu, L.; Zhang, B. Q.; Liu, X. F. Microporous Mesoporous Mat. 2014, 193, 127. doi: 10.1016/j.micromeso.2013.12.034
-
[39]
(39) Liu, X. B.; Liu, Z. M.; Chang, F. X.; Qu, L. H.; Sang, S. Y.; Zhang, Y. Y. New Carbon Mater. 2006, 21, 237. [刘献斌, 刘中民, 常福祥, 曲丽红, 桑石云, 张阳阳. 新型炭材料, 2006, 21, 237.]
-
[40]
(40) Karwacki, L.; Weckhuysen, B. M. Phys. Chem. Chem. Phys. 2011, 13, 3681. doi: 10.1039/C0CP02220A
-
[41]
(41) Jirka, I.; Sazama, P.; Zikánová, A.; Hrabánek, P.; Kocirik, M. Microporous Mesoporous Mat. 2011, 137, 8. doi: 10.1016/j.micromeso.2010.08.015
-
[42]
(42) Ivanov, D. P.; Sobolev, V. I.; Panov, G. I. Appl. Catal. A 2003, 241, 113. doi: 10.1016/S0926-860X(02)00462-3
-
[43]
(43) Guisnet, M.; Costa, L.; Ribeiro, F. R. J. Mol. Catal. A: Chem. 2009, 305, 69. doi: 10.1016/j.molcata.2008.11.012
-
[44]
(44) He, J.; Yang, X. B.; Evans, D. G.; Duan, X. Mater. Chem. Phys. 2003, 77, 270. doi: 10.1016/S0254-0584(01)00557-0
-
[45]
(45) Kuhn, J.; Motegh, M.; Gross, J.; Kapteijn, F. Microporous Mesoporous Mat. 2009, 120, 35. doi: 10.1016/j.micromeso.2008.08.061
-
[1]
-
-
[1]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[2]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[3]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[4]
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
-
[5]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[6]
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
-
[7]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[8]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[9]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[10]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[11]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[12]
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072
-
[13]
Xiuyun Wang , Jiashuo Cheng , Yiming Wang , Haoyu Wu , Yan Su , Yuzhuo Gao , Xiaoyu Liu , Mingyu Zhao , Chunyan Wang , Miao Cui , Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067
-
[14]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[15]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[16]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[17]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[18]
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
-
[19]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[20]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[1]
Metrics
- PDF Downloads(294)
- Abstract views(656)
- HTML views(40)