Citation: LIU Xing, LI Yue-Xiang, PENG Shao-Qin, LAI Hua. Progress in Visible-Light Photocatalytic Hydrogen Production by Dye Sensitization[J]. Acta Physico-Chimica Sinica, ;2015, 31(4): 612-626. doi: 10.3866/PKU.WHXB201502041 shu

Progress in Visible-Light Photocatalytic Hydrogen Production by Dye Sensitization

  • Received Date: 15 December 2014
    Available Online: 4 February 2015

    Fund Project: 国家自然科学基金(21163012) (21163012) 国家重点基础研究发展规划项目(973) (2009CB220003) (973) (2009CB220003) 衡阳师范学院科学基金项目(14B24) (14B24)衡阳市科学技术发展计划项目(2014KJ18)资助 (2014KJ18)

  • Dye sensitization is an important strategy for broadening the excitation wavelength range of wideband- gap photocatalysts to use visible light from the sun. In this paper, the primary principle of dye-sensitized water splitting for hydrogen production was introduced, and the research progress in dye sensitizers, sensitized matrixes or supporters, the interaction between dyes and matrixes, co-catalysts for hydrogen evolution, and sacrificial electron donors were all reviewed. Moreover, the pathways of charge transmission and stability issues in dye-sensitized systems were discussed.

  • 加载中
    1. [1]

      (1) Fujishima, A.; Honda, K. Nature 1972, 37, 238.

    2. [2]

      (2) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/b800489g

    3. [3]

      (3) Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev. 2010, 110, 6503. doi: 10.1021/cr1001645

    4. [4]

      (4) Huang, Y. F.; Wu, J. H. Prog. Chem. 2006, 18 (7-8), 168. [黄昀方, 吴季怀. 化学进展, 2006, 18 (7-8), 168.]

    5. [5]

      (5) Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Nature 2006, 440, 295. doi: 10.1038/440295a

    6. [6]

      (6) Osterloh, F. E. Chem. Mater. 2008, 20, 35. doi: 10.1021/cm7024203

    7. [7]

      (7) Li, Y. X.; Lü, G. X.; Li, S. B. J. Mol. Catal. (China) 2001, 15 (1), 72. [李越湘, 吕功煊, 李树本. 分子催化, 2001, 15 (1), 72.]

    8. [8]

      (8) Ni, M.; Leung, M. K. H.; Leung, D. Y. C. Chin. J. Power Sources 2006, 30 (10), 856. [倪萌, Leung, M. K. H., Leung, D. Y. C. 电源技术, 2006, 30 (10), 856. ]

    9. [9]

      (9) Zhang, X. J.; Li, S. B.; Lü, G. X. J. Mol. Catal. (China) 2012, 24 (6), 569. [张晓杰, 李树本, 吕功煊. 分子催化, 2012, 24 (6), 569.]

    10. [10]

      (10) Pei, D. H.; Luan, J. F. Int. J. Photoenergy 2012, 2012, 86.

    11. [11]

      (11) Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, L. K. Renew. Sust. Energy Rev. 2007, 11, 401. doi: 10.1016/j.rser.2005.01.009

    12. [12]

      (12) Justinyoungblood, W.; Anna, L. S.; Maeda, K.; Mallouk, T. E. Accounts Chem. Res. 2009, 42, 1966. doi: 10.1021/ar9002398

    13. [13]

      (13) O'Re gan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0

    14. [14]

      (14) Du, P.W.; Eisenberg, R. Energy Environ. Sci. 2012, 5, 6012. doi: 10.1039/c2ee03250c

    15. [15]

      (15) Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Chem. Soc. Rev. 2014, 43, 7787. doi: 10.1039/C3CS60425J

    16. [16]

      (16) Pan, G. F. Modification of TiO2, ZnO and Their Performance of Photocatalytic Hydrogen Evolution under Visible Light. Masteral Dissertation, Nanchang University, Nanchang, 2007. [潘高峰. TiO2、ZnO的改性及其可见光催化制氢性能[D]. 南昌: 南昌大学, 2007.]

    17. [17]

      (17) Ji, R. Study on Hydrogen Production fromWater Photolysis Using Phthalocyanine Dye Sensitized Nano TiO2. Nanjing Agricultural University, Nanjing, 2007. [吉仁. 酞菁染料敏化纳米TiO2 光解水制氢的研究[D]. 南京: 南京农业大学, 2007.]

    18. [18]

      (18) Liang, M.; Tao, Z. L.; Chen, J. Chem. Online 2005, No. 12, 889. [梁茂, 陶占良, 陈军. 化学通报, 2005, No. 12, 889.]

    19. [19]

      (19) Fresno, F.; Hernández-Alonso, M. D. Green Energy Technol. 2013, 329.

    20. [20]

      (20) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382. doi: 10.1021/ja00067a063

    21. [21]

      (21) Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613. doi: 10.1021/ja003299u

    22. [22]

      (22) Grätzel, M. Accounts Chem. Res. 1981, 14, 376. doi: 10.1021/ar00072a003

    23. [23]

      (23) Bi, Z. C.; Tien, H. T. Int. J. Hydrog. Energy 1984, 9, 717.

    24. [24]

      (24) Dhanalakshmi, K. B.; Latha, S.; Anandan, S.; Maruthamuthu, P. Int. J. Hydrog. Energy 2001, 26, 669.

    25. [25]

      (25) Zhang, X. H.; Veikko, U.; Mao, J.; Cai, P.; Peng, T. Y. Chem. Eur. J. 2012, 18, 12103. doi: 10.1002/chem.201200725

    26. [26]

      (26) Li, J.; E, Y.; Lian, L. S.; Ma, W. H. Int. J. Hydrog. Energy 2013, 38, 10746. doi: 10.1016/j.ijhydene.2013.02.121

    27. [27]

      (27) Kruth, A.; Hansen, S.; Beweries, T.; Bruser, V.; Weltmann, K. D. ChemSusChem 2013, 6, 152. doi: 10.1002/cssc.201200408

    28. [28]

      (28) Peng, T. Y.; Dai, K.; Yi, H. B.; Ke, D. N.; Cai, P.; Zan, L. Chem. Phys. Lett. 2008, 460, 216. doi: 10.1016/j.cplett.2008.06.001

    29. [29]

      (29) Bae, E.; Choi, W. J. Phys.Chem. B 2006, 110, 14792. doi: 10.1021/jp062540+

    30. [30]

      (30) Veikko, U.; Zhang, X. B.; Peng, T. Y.; Cai, P.; Cheng, G. Z. Spectrochim. Acta A 2013, 105, 539. doi: 10.1016/j.saa.2012.12.061

    31. [31]

      (31) Oman, E. S.; Navio, J.; Litter, M. J. Adv. Oxid. Tech. 1998, 3 (3), 261.

    32. [32]

      (32) Harriman, A.; Porter, G.; Marie-Claude, R. J. Chem. Soc., Faraday Trans. 2 1981, 77 (5), 833. doi: 10.1039/f29817700833

    33. [33]

      (33) Hagiwara, H.; Matsumoto, H.; Ishihara, T. Electrochemistry 2008, 76 (2), 125.

    34. [34]

      (34) Kim, W.; Tachikawa, T.; Majima, T.; Li, C.; Kim, H.; Choi, W. Energy Environ. Sci. 2010, 3, 1789. doi: 10.1039/c0ee00205d

    35. [35]

      (35) Astuti, Y.; Palomares, E.; Haque, S. A.; Durrant, J. R. J. Am. Chem. Soc. 2005, 127, 15120. doi: 10.1021/ja0533444

    36. [36]

      (36) Zhang, X. F.; Shen, T. Chem. Online 1995, No. 6, 8. [张先付, 沈涛. 化学通报, 1995, No. 6, 8.]

    37. [37]

      (37) López Arbeloa, I. Dyes Pigm. 1983, 4, 211.

    38. [38]

      (38) Valdes-Aguiiera, O.; Neckers, D. C. Accounts Chem. Res. 1989, 22, 171. doi: 10.1021/ar00161a002

    39. [39]

      (39) De, S.; Das, S.; Giri swami, A. Spectrochim. Acta Part A 2005, 61, 1821. doi: 10.1016/j.saa.2004.06.054

    40. [40]

      (40) Yan, Z. P.; Yu, X. X.; Zhang, Y. Y.; Jia, H. X.; Sun, Z. J.; Du, P. W. Appl. Catal. B: Environ. 2014, 160 -161, 173.

    41. [41]

      (41) Pelet, S.; Grätzel, M.; Moser, J. E. J. Phys. Chem. B 2003, 107, 3215.

    42. [42]

      (42) Zhang, X. J.; Jin, Z. L.; Li, Y. X.; Li, S. B.; Lu, G. X. J. Colloid Interface Sci. 2009, 333, 285. doi: 10.1016/j.jcis.2009.01.013

    43. [43]

      (43) Zhang, X. J.; Tang, Z. Q.; Jin, Z. L.; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2011, 27 (5), 1143. [张晓杰, 汤长青, 靳治良, 吕功煊, 李树本. 物理化学学报, 2011, 27 (5), 1143.] doi: 10.3866/PKU.WHXB20110511

    44. [44]

      (44) Kasche, V.; Lindqvist, L. Photochem. Photobiol. 1965, 4, 923. doi: 10.1111/php.1965.4.issue-5

    45. [45]

      (45) Shimidzu, T.; Iyoda, T.; Koide, Y. J. Am. Chem. Soc. 1985, 107, 35. doi: 10.1021/ja00287a007

    46. [46]

      (46) Birla, L.; Cristian, A. M.; Hillebrand, M. Spectrochim. Acta Part A 2004, 60, 551. doi: 10.1016/S1386-1425(03)00261-0

    47. [47]

      (47) Mau, A.W. H.; Johansen, O.; Sasse, W. H. F. Photochem. Photobiol. 1985, 41, 503. doi: 10.1111/php.1985.41.issue-5

    48. [48]

      (48) Heleg, V.; Willner, I. J. Chem. Soc., Chem. Commun. 1994, 2113.

    49. [49]

      (49) Gurunathan, K.; Maeuthamuthu, P.; Sastri, M. V. C. Int. J. Hydrog. Energy 1997, 22, 57. doi: 10.1016/S0360-3199(96) 00075-4

    50. [50]

      (50) Abe, R.; Sayama, K.; Arakawa, H. Chem. Phys. Lett. 2002, 362, 441. doi: 10.1016/S0009-2614(02)01140-5

    51. [51]

      (51) Xie, C. F.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. Acta Energiae Solaris Sin. 2007, 28 (9), 956. [谢称福, 李越湘, 彭绍琴, 吕功煊, 李树本. 太阳能学报, 2007, 28 (9), 956.]

    52. [52]

      (52) Chatterjee, D. Catal. Commun. 2010, 11, 336. doi: 10.1016/j.catcom.2009.10.026

    53. [53]

      (53) Sreethawong, T.; Junbua, C.; Chavade, S. J. Power Sources 2009, 190, 513. doi: 10.1016/j.jpowsour.2009.01.054

    54. [54]

      (54) Abe, R.; Sayama, K.; Arakawa, H. J. J. Photochem. Photobiol. A: Chem. 2004, 166, 115. doi: 10.1016/j.jphotochem. 2004.04.031

    55. [55]

      (55) Liu, F. S.; Ji, R.; Wu, M.; Sun, Y. M. Acta Phys. -Chim. Sin. 2007, 23 (12), 1899. [刘福生, 吉仁, 吴敏, 孙岳明. 物理化学学报, 2007, 23 (12), 1899.] doi: 10.3866/PKU. WHXB20071213

    56. [56]

      (56) Maia, D. L. S.; Pepe, I.; Ferreirada Silva, A.; Silva, L. A. J. Photochem. Photobiol. A: Chem. 2012, 243, 61. doi: 10.1016/j.jphotochem.2012.06.008

    57. [57]

      (57) Zhang, G.; Choi, W. Chem. Commun. 2012, 48, 10621. doi: 10.1039/c2cc35751h

    58. [58]

      (58) Yang, J. B.; Ganesan, P.; Teuscher, J.; Moehl, T.; Kim, Y. J.; Yi, C. Y.; Comte, P.; Pei, K.; Holcombe, T.W.; Nazeeruddin, M. K.; Hua, J. L.; Zakeeruddin, S. M.; Tian, H.; Grätzel, M. J. Am. Chem. Soc. 2014, 136, 5722. doi: 10.1021/ja500280r

    59. [59]

      (59) Cai, Z. X.; Luo, H.W.; Qi, P. L.; Wang, J. G.; Zhang, G. X.; Liu, Z. T.; Zhang, D. Q. Macromolecules 2014, 47, 2899.

    60. [60]

      (60) Li, H.; Wu, Y. Z.; Geng, Z. Y.; Liu, J. C.; Xu, D. D.; Zhu, W. H. J. Mater. Chem. A 2014, 2, 14649.

    61. [61]

      (61) Zhang, X. H.; Peng, T. Y.; Yu, L. J.; Li, R. J.; Li, Q. Q.; Li, Z. ACS Catal. 2015, 5, 504.

    62. [62]

      (62) Zhao, W.; Hou, Y. J.; Wang, X. S.; Zhang, B.W.; Cao, Y.; Yang, R.; Wang, W. B.; Xiao, X. R. Sol. Energy Mate. Sol. Cells 1999, 58, 173. doi: 10.1016/S0927-0248(98)00201-3

    63. [63]

      (63) Min, S. X.; Lü, G. X. Int. J. Hydrog. Energy 2012, 37, 10564.

    64. [64]

      (64) Li, B.; Lü, G. X. J. Mol. Catal. (China) 2013, 27 (2), 181. [李波, 吕功煊. 分子催化, 2013, 27 (2), 181.]

    65. [65]

      (65) Liu, X.; Li, Y. X.; Peng, S. Q.; Lu, G. X.; Li, S. B. Photochem. Photobiol. Sci. 2013, 12, 1903. doi: 10.1039/c3pp50167a

    66. [66]

      (66) Maeda, K.; Eguchi, M.; Youngblood, J.; Mallouk, T. E. Chem. Mater. 2008, 20, 6770. doi: 10.1021/cm801807b

    67. [67]

      (67) Chen, Y. J.; Mou, Z. G.; Yin, S. L.; Huang, H.; Yang, P.; Wang, X. M.; Du, Y. K. Mater. Lett. 2013, 107, 31. doi: 10.1016/j.matlet.2013.05.065

    68. [68]

      (68) Choi, S. K.; Kim, S.; Ryu, J.; Lim, S. K.; Park, H. Photochem. Photobiol. Sci. 2012, 11, 1437. doi: 10.1039/c2pp25054c

    69. [69]

      (69) Perera, V. P. S.; Senadeera, G. K. R.; Tennakone, K. S. J. Colloid Interface Sci. 2003, 265, 428.

    70. [70]

      (70) Puangpetch, T.; Sommakettarin, P.; Chavadej, S.; Sreethawong, T. Int. J. Hydrog. Energy 2010, 35, 12428. doi: 10.1016/j.ijhydene.2010.08.138

    71. [71]

      (71) Li, Q. Y.; Jin, Z. L.; Peng, Z. G.; Li, Y. X.; Li, S. B.; Lu, G. X. J. Phys. Chem. C 2007, 111, 8237. doi: 10.1021/jp068703b

    72. [72]

      (72) Li, Q. Y.; Chen, L.; Lu, G. X. J. Phys. Chem. C 2007, 111, 11494. doi: 10.1021/jp072520n

    73. [73]

      (73) Li, Q. Y.; Lu, G. X. J. Mol. Catal. A: Chem. 2007, 266, 75. doi: 10.1016/j.molcata.2006.10.047

    74. [74]

      (74) Liu, X.; Li, Y. X.; Peng, S. Q.; Lu, G. X.; Li, S. B. Int. J. Hydrog. Energy 2012, 37, 12150. doi: 10.1016/j.ijhydene.2012.06.028

    75. [75]

      (75) Min, S. X.; Lu, G. X. J. Phys. Chem. C 2011, 115, 13938. doi: 10.1021/jp203750z

    76. [76]

      (76) Zhang, W. Y.; Li, Y. X.; Peng, S. Q.; Cai, X. Beilstein J. Nanotechnol. 2014, 5, 801. doi: 10.3762/bjnano.5.92

    77. [77]

      (77) Min, S. X.; Lu, G. X. J. Phys. Chem. C 2012, 116, 19644. doi: 10.1021/jp304022f

    78. [78]

      (78) Xu, J. Y.; Li, Y. X.; Peng, S. Q.; Lu, G. X.; Li, S. B. Phys. Chem. Chem. Phys. 2013, 15, 7657. doi: 10.1039/c3cp44687e

    79. [79]

      (79) Xu, J. Y.; Li, Y. X.; Peng, S. Q. Int. J. Hydrog. Energy 2015, 40, 353. doi: 10.1016/j.ijhydene.2014.10.150

    80. [80]

      (80) Zhang, J.; Liu, X. H. Phys. Chem. Chem. Phys. 2014, 16, 8655. doi: 10.1039/c4cp00084f

    81. [81]

      (81) Zhang, X. J.; Jin, Z. L.; Li, Y. X.; Li, S. B.; Lu, G. X. Appl. Surf. Sci. 2008, 254, 4452. doi: 10.1016/j.apsusc.2008.01.038

    82. [82]

      (82) Kataoka, Y.; Sato, K.; Miyazaki, Y.; Masuda, K.; Tanaka, H.; Naito, S.; Mori, W. Energy Environ. Sci. 2009, 2, 397. doi: 10.1039/b814539c

    83. [83]

      (83) Wang, C.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2012, 134, 7211. doi: 10.1021/ja300539p

    84. [84]

      (84) Fateeva, A.; Chater, P. A.; Ireland, C. P.; Tahir, A. A.; Khimyak, Y. Z.; Wiper, P. V.; Darwent, J. R.; Rosseinsky, M. J. Angew. Chem. Int. Edit. 2012, 51, 7440. doi: 10.1002/anie.201202471

    85. [85]

      (85) Kim, W.; Tachikawa, T.; Majima, T. J. Phys. Chem. C 2009, 113, 10603.

    86. [86]

      (86) Jin, Z. L.; Zhang, X. J.; Li, Y. X.; Li, S. B.; Lu, G. X. Catal. Commun. 2007, 8, 1267. doi: 10.1016/j.catcom.2006.11.019

    87. [87]

      (87) Li, Y. X.; Xie, C. F.; Peng, S. Q.; Lu, G. X.; Li, S. B. J. Mol. Catal. A: Chem. 2008, 282, 117. doi: 10.1016/j.molcata.2007.12.005

    88. [88]

      (88) Guo, M. M.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. J. Funct. Mater. 2009, 5 (40), 802. [郭苗苗, 李越湘, 彭绍琴, 吕功煊, 李树本. 功能材料, 2009, 5 (40), 802.]

    89. [89]

      (89) Li, Y. X.; Guo, M. M.; Peng, S. Q.; Lu, G. X.; Li, S. B. Int. J. Hydrog. Energy 2009, 34, 5629. doi: 10.1016/j.ijhydene.2009.05.100

    90. [90]

      (90) Zhang, X. J.; Jin, Z. L.; Li, Y. X.; Li, S. B.; Lu, G. X. J. Power Sources 2007, 166, 74. doi: 10.1016/j.jpowsour.2006.12.082

    91. [91]

      (91) Zeng, L. Y.; Dai, S. Y.; Wang, K. J.; Shi, C.W.; Kong, F. T.; Hu, L. H.; Pan, X. Acta Phys. Sin. 2005, 54 (1), 53. [曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘旭. 物理学报, 2005, 54 (1), 53.]

    92. [92]

      (92) Murakoshi, K.; Kano, G.; Wada, Y.; Yanagida, S.; Miyazaki, H.; Matsumoto, M.; Murasawa, S. J. Electroanal. Chem. 1995, 396, 27. doi: 10.1016/0022-0728(95)04185-Q

    93. [93]

      (93) Abe, R.; Hara, K.; Sayama, K.; Domen, K.; Arakawa, H. J. Photochem. Photobiol. A: Chem. 2000, 137, 63. doi:10.1016/S1010-6030(00)00351-8

    94. [94]

      (94) Fung, A. K. M.; Chiu, B. K.W.; Lam, M. H.W. Water Res. 2003, 37, 1939. doi: 10.1016/S0043-1354(02)00567-5

    95. [95]

      (95) Chen, Y. S.; Li, C.; Zeng, Z. H.; Wang, W. B.; Wang, X. S.; Zhang, B.W. J. Mater. Chem. 2005, 15, 1654. doi: 10.1039/b418906j

    96. [96]

      (96) Regazzoni, A. E.; Mandelbaum, P.; Matsuyoshi, M.; Schiller, S.; Bilmes, S. A.; Blesa, M. A. Langmuir 1998, 14, 868. doi: 10.1021/la970665n

    97. [97]

      (97) Ikeda, S.; Abe, C.; Torimoto, T.; Ohtani, B. J. Photochem. Photobiol. A: Chem. 2003, 160, 61. doi: 10.1016/S1010-6030(03)00222-3

    98. [98]

      (98) Kalyanasundaram, K.; Grätzel, M. Coord. Chem. Rev. 1998, 77, 347.

    99. [99]

      (99) Peng, T. Y.; Ke, D. N.; Cai, P.; Dai, K.; Ma, L.; Zan, L. J. Power Sources 2008, 180, 498. doi: 10.1016/j.jpowsour.2008.02.002

    100. [100]

      (100) Bae, E.; Choi, W.; Park, J.; Shin, H. S.; Kim, S. B.; Lee, J. S. J. Phys. Chem. B 2004, 108, 14093. doi: 10.1021/jp047777p

    101. [101]

      (101) Jin, Z. L.; Zhang, X. J.; Lu, G. X.; Li, S. B. J. Mol. Catal. A: Chem. 2006, 259, 275. doi: 10.1016/j.molcata.2006.06.035

    102. [102]

      (102) Min, S. X.; Lu, G. X. J. Phys. Chem. C 2012, 116, 25415. doi: 10.1021/jp3093786

    103. [103]

      (103) Kong, C.; Min, S. X.; Lu, G. X. Int. J. Hydrog. Energy 2014, 39, 4836. doi: 10.1016/j.ijhydene.2014.01.089

    104. [104]

      (104) Kang, S, Z.; Chen, L. L.; Li, X. Q.; Mu, J. Appl. Surf. Sci. 2012, 258, 6029. doi: 10.1016/j.apsusc.2012.02.118

    105. [105]

      (105) Mu. J.; Chen, L. L.; Kang, S. Z.; Li, X. Q. Chin. J. Inorg. Chem. 2012, 28 (2), 251. [穆劲, 陈丽莉, 康诗钊, 李向清. 无机化学学报, 2012, 28 (2), 251.]

    106. [106]

      (106) Li, X. Q.; Zhang, J.; Kang, S. Z.; Li, G. D.; Mu, J. Ceram. Int. 2014, 40, 10171. doi: 10.1016/j.ceramint.2014.02.055

    107. [107]

      (107) Zhang, W.; Xu, R. Int. J. Hydrog. Energy 2012, 37, 17899. doi: 10.1016/j.ijhydene.2012.08.150

    108. [108]

      (108) Zhang, X. J.; Jin, Z. L.; Li, Y. X.; Li, S. B.; Lu, G. X. J. Phys. Chem. C 2009, 113, 2630. doi: 10.1021/jp8085717

    109. [109]

      (109) Nada, A. A.; Hamed, H. A.; Barakat, M. H.; Mohamed, N. R.; Veziroglu, T. N. Int. J. Hydrog. Energy 2008, 33, 3264. doi: 10.1016/j.ijhydene.2008.04.027

    110. [110]

      (110) Abe, R.; Sayama, K.; Arakawa, H. Chem. Phys. Lett. 2003, 379, 230. doi: 10.1016/j.cplett.2003.07.026

    111. [111]

      (111) Kalyanasundaram, K.; Kiwi, J.; Grätzel, M. HeIv. Chim. Acta 1978, 61, 2720.

    112. [112]

      (112) Han, Z. J.; McNamara, W. R.; Eum, M.; Holland, P. L.; Eisenberg, R. Angew. Chem. Int. Edit. 2012, 51, 1667. doi: 10.1002/anie.v51.7

    113. [113]

      (113) McCormick, T. M.; Calitree, B. D.; Orchard, A.; Kraut, N. D.; Bright, F. V.; Detty, M. R.; Eisenberg, R. J. Am. Chem. Soc. 2010, 132, 15480. doi: 10.1021/ja1057357

    114. [114]

      (114) Lazarides, T.; McCormick, T.; Du, P.W.; Luo, G. G.; Lindley, B.; Eisenberg, R. J. Am. Chem. Soc. 2009, 131, 9192. doi: 10.1021/ja903044n

    115. [115]

      (115) Krishnan, C. V.; Sutin, N. J. Am. Chem. Soc. 1981, 103, 2141. doi: 10.1021/ja00398a066

    116. [116]

      (116) Probst, B.; Guttentag, M.; Rodenberg, A.; Hamm, P.; Alberto, R. Inorg. Chem. 2011, 50, 3404. doi: 10.1021/ic102317u

    117. [117]

      (117) Zhu, M. S.; Li, Z.; Du, Y. K.; Mou, Z. G.; Yang, P. ChemCatChem 2012, 4, 112. doi: 10.1002/cctc.v4.1

    118. [118]

      (118) Hori, H.; Ishihara, J.; Koike, K.; Takeuchi, K.; Ibusuki, T.; Ishitani, O. J. Photochem. Photobiol. A: Chem. 1999, 120, 119. doi: 10.1016/S1010-6030(98)00430-4

    119. [119]

      (119) Li, B.; Lü, G. X. Acta Phys. -Chim. Sin. 2013, 29 (8), 1778. [李波, 吕功煊. 物理化学学报, 2013, 29 (8), 1778.] doi: 10.3866/PKU.WHXB201305302

    120. [120]

      (120) Hong, J. D.; Wang, Y. B.; Pan, J. S.; Zhong, Z. Y.; Xu, R. Nanoscale 2011, 3, 4655. doi: 10.1039/c1nr10628g

    121. [121]

      (121) Liu, X.; Li, Y. X.; Peng, S. Q.; Lu, G. X.; Li, S. B. Int. J. Hydrog. Energy 2013, 38, 11709. doi: 10.1016/j.ijhydene.2013.06.095

    122. [122]

      (122) Wang, J. L.; Wang, C.; Lin, W. ACS Catal. 2012, 2, 2630. doi: 10.1021/cs3005874

    123. [123]

      (123) Roy, N.; Sohn, Y.; Pradhan, D. ACS Nano 2013, 7, 2532. doi: 10.1021/nn305877v

    124. [124]

      (124) Liu, C.; Han, X. G.; Xie, S. F.; Kuang, Q.; Wang, X.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. Chem. Asian J. 2013, 8, 282.

    125. [125]

      (125) Gu, L. A.; Wang, J. Y.; Cheng, H.; Du, Y. C.; Han, X. J. Chem. Commun. 2012, 48, 6 978.

    126. [126]

      (126) Abe, R.; Shinmei, K.; Koumura, N.; Hara, K.; Ohtani, B. J. Am. Chem. Soc. 2013, 135, 16872. doi: 10.1021/ja4048637

    127. [127]

      (127) Lee, J.; Kwak, J.; Ko, K. C.; Park, J. H.; Ko, J. H.; Park, N.; Kim, E.; Ryu, D. H.; Ahn, T. K.; Lee, J. Y.; Son, S. U. Chem. Commun. 2012, 48, 11431. doi: 10.1039/c2cc36501d

    128. [128]

      (128) Kumari, A.; Mondal, I.; Pal, U. New J. Chem. 2015, 39, 713. doi: 10.1039/C4NJ01436G


  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    5. [5]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    6. [6]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    9. [9]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    10. [10]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    11. [11]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    12. [12]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    13. [13]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    16. [16]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    20. [20]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

Metrics
  • PDF Downloads(761)
  • Abstract views(1006)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return