Citation: LI Zhao-Hui, LI Shi-Jiao, ZHOU Jin, ZHU Ting-Ting, SHEN Hong-Long, ZHUO Shu-Ping. Preparation and Supercapacitive Performance of N, S Co-Doped Activated Carbon Materials[J]. Acta Physico-Chimica Sinica, ;2015, 31(4): 676-684. doi: 10.3866/PKU.WHXB201501281 shu

Preparation and Supercapacitive Performance of N, S Co-Doped Activated Carbon Materials

  • Received Date: 13 November 2014
    Available Online: 28 January 2015

    Fund Project: 国家自然科学基金(51302156)资助项目 (51302156)

  • In this work, N, S co-doped microporous carbon materials were successfully prepared using human hair and sucrose as carbon precursors via a two-step method that combined hydrothermal treatment and post-KOH activation. The morphology, pore texture, and surface chemical properties of the activated carbon materials were investigated by scanning electron microscopy, transmission electron microscopy, N2 adsorption/desorption, X-ray photoelectron spectroscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. The electrochemical capacitive behavior of the prepared carbons was systematically studied in 6 mol·L-1 KOH electrolyte. The maximum specific surface area of the prepared carbons was found to be 1849.4 m2·g-1 with a porosity that mainly consisted of micropores. Nitrogen and sulfur contents varied from 1.6% to 2.5% and from 0.2% to 0.5% (atomic fraction (x)), respectively. The synergistic-positive effect of N, O, and S-containing groups caused the prepared carbons to exhibit a large pseudo-capacitance. High specific capacitances of up to 200 F·g-1 at 0.2 A·g-1 were observed, response to an energy density of 6.9 Wh·kg-1. At a power density of 10000 W·kg-1, the energy density was found to be 4.1 Wh·kg-1. The present work highlights the significance of this new strategy to prepare N, S co-doped carbon materials from renewable biomass.

  • 加载中
    1. [1]

      (1) Horst, J. R.; Karl, F. K. Am. Chem. Soc. 1983, 7, 71.

    2. [2]

      (2) Ishida, M.; Jin, H. Ind. Eng. Chem. Res. 1996, 35, 2469. doi: 10.1021/ie950680s

    3. [3]

      (3) Fan, L. S.; Zeng, L.; Wang, W.; Luo, S.W. Energy Environ. Sci. 2012, 5, 7254. doi: 10.1039/c2ee03198a

    4. [4]

      (4) Adanez, J.; Abad, A.; Garcia-Labiano, F.; Gayan, P.; de Die , L. F. Prog. Energy Combust. Sci. 2012, 38, 215. doi: 10.1016/j.pecs.2011.09.001

    5. [5]

      (5) Zhang, Y.; Doroodchi, E.; Moghtaderi, B. Energy Fuels 2012, 26, 287.

    6. [6]

      (6) Fang, H.; Haibin, L.; Zengli, Z. Int. J. Chem. Eng. 2009, 710515

    7. [7]

      (7) Lyngfelt, A.; Leckner, B.; Mattisson, T. Chem. Eng. Sci. 2001, 56, 3101. doi: 10.1016/S0009-2509(01)00007-0

    8. [8]

      (8) Johansson, M.; Mattisson, T.; Lyngfelt, A. J. Therm. Sci. 2006, 10, 93. doi: 10.2298/TSCI0603093J

    9. [9]

      (9) Saha, C.; Bhattacharya, S. Int. J. Chem. Eng. 2011, 36, 12048.

    10. [10]

      (10) Cho, P.; Mattisson, T.; Lyngfelt, A. Fuels 2004, 83, 1215. doi: 10.1016/j.fuel.2003.11.013

    11. [11]

      (11) Zhao, H. B.; Liu, L. M.; Wang, B.W.; Xu, D.; Jiang, L. L.; Zheng, C. G. Energy Fuels 2008, 22, 898. doi: 10.1021/ef7003859

    12. [12]

      (12) Dennis, J. S.; Scott, S. A. Fuels 2010, 89, 1623. doi: 10.1016/j.fuel.2009.08.019

    13. [13]

      (13) Lee, J. B.; Park, C. S.; Choi, S. I.; Song, Y.W.; Kim, Y. H.; Yang, H. S. J. Ind. Engin. Chem. 2005, 11, 96.

    14. [14]

      (14) Yang, J. B.; Cai, N. S.; Li, Z. S. Energy Fuels 2007, 21, 360.

    15. [15]

      (15) Guo, L.; Zhao, H. B.; Ma, J. C.; Mei, D. F.; Zheng, C. G. Chem. Eng. Technol. 2014, 37, 1211. doi: 10.1002/ceat.v37.7

    16. [16]

      (16) Zhu, X.; Li, K. Z.; Wei, Y. G.; Wang, H.; Sun, L. Y. Fuels 2014, 28, 754. doi: 10.1021/ef402203a

    17. [17]

      (17) Wang, C. P.; Cui, H. R.; Di, H. S.; Guo, Q. J.; Huang, F. Fuels 2014, 28, 4162. doi: 10.1021/ef500354w

    18. [18]

      (18) Azimi, G.; Leion, H.; Mattisson, T.; Rydén, M.; Snijkers, F.; Lyngfelt, A. Ind. Eng. Chem. Res. 2014, 53, 10358. doi: 10.1021/ie500994m

    19. [19]

      (19) Qin, W.; Wang, Y.; Dong, C.; Zhang, J.; Chen, Q.; Yang, Y. Energ. Appl. Surf. Sci. 2013, 282, 718. doi: 10.1016/j.apsusc.2013.06.041

    20. [20]

      (20) Wang, B.W.; Yan, R.; Zhao, H. B.; Zheng, Y.; Liu, Z. H.; Zheng, C. G. Energy Fuels 2011, 25, 3344. doi: 10.1021/ef2004078

    21. [21]

      (21) Qin, W.; Chen, Q.; Wang, Y.; Dong, C.; Zhang, J.; Li, W.; Yang, Y. Energ. Appl. Surf. Sci. 2013, 266, 350. doi: 10.1016/j.apsusc.2012.12.023

    22. [22]

      (22) Wang, S. Z.; Wang, G. X.; Jiang, F.; Luo, M.; Li, H. Y. Energy Environ. Sci. 2010, 3, 1353. doi: 10.1039/b926193a

    23. [23]

      (23) Liu, L.; Zachariah, M. R. Energy Fuels 2013, 27, 4977. doi: 10.1021/ef400748x

    24. [24]

      (24) Bao, J.; Li, Z.; Cai, N. Ind. Eng. Chem. Res. 2013, 52, 6119. doi: 10.1021/ie400237p

    25. [25]

      (25) Ksepko, E.; Siriwardane, R. V.; Tian, H. J.; Simonyi, T.; Sciazko, M. Energy Fuels 2012, 26, 2461. doi: 10.1021/ef201441k

    26. [26]

      (26) Moghtaderi, B.; Song, H. Energy Fuels 2010, 24, 5359.

    27. [27]

      (27) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Nature 2008, 453, 638. doi: 10.1038/nature06964

    28. [28]

      (28) Xie, X.W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J. Nature 2009, 458, 746. doi: 10.1038/nature07877

    29. [29]

      (29) Zhou, X.; Xu, Q.; Lei, W.; Zhang, T.; Qi, X.; Liu, G.; Deng, K.; Yu, J. Small 2014, 10, 674. doi: 10.1002/smll.201301870

    30. [30]

      (30) Zhu, J.; Ng, K. Y. S.; Deng, D. Cryst. Growth Des. 2014, 14, 2811. doi: 10.1021/cg5000777

    31. [31]

      (31) Liu, X. H.; Zhang, J.; Wu, S. H.; Yang, D. J.; Liu, P.; Zhang, H. M.; Wang, S. R.; Yao, X. D.; Zhu, G. S.; Zhao, H. J. RSC Adv. 2012, 2, 6178. doi: 10.1039/c2ra20797d

    32. [32]

      (32) Guo, H.; Barnard, A. S. J. Colloid Interface Sci. 2012, 386, 315. doi: 10.1016/j.jcis.2012.07.011

    33. [33]

      (33) Cornell, R. M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses;Wiley-VCH: New York, USA, 2003.

    34. [34]

      (34) Dong, C. Q.; Liu, X. L.; Qin, W.; Lu, Q.; Wang, X. Q.; Shi, S. M.; Yang, Y. P. Appl. Surf. Sci. 2012, 258, 2562. doi: 10.1016/j.apsusc.2011.10.092

    35. [35]

      (35) Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Rev. Mod. Phys. 1992, 64, 1045. doi: 10.1103/RevModPhys.64.1045

    36. [36]

      (36) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 46, 6671. doi: 10.1103/PhysRevB.46.6671

    37. [37]

      (37) Leung, T. C.; Chan, C. T.; Harmon, B. N. Phys. Rev. B 1991, 44, 2923. doi: 10.1103/PhysRevB.44.2923

    38. [38]

      (38) Guo, H. B.; Barnard, A. S. Phys. Rev. B 2011, 83, 094112. doi: 10.1103/PhysRevB.83.094112

    39. [39]

      (39) Song, J. J.; Niu, X. Q.; Ling, L. X.; Wang, B. J. Fuel Process. Technol. 2013, 115, 26. doi: 10.1016/j.fuproc.2013.04.003

    40. [40]

      (40) Wong, K.; Zeng, Q. H.; Yu, A. B. J. Phys. Chem. C 2011, 115, 4656. doi: 10.1021/jp1108043

    41. [41]

      (41) Martin, G. J.; Cutting, R. S.; VauGhan, D. J.; Warren, M. C. Am. Mineral. 2009, 94, 1341. doi: 10.2138/am.2009.3029

    42. [42]

      (42) Sandratskii, L. M.; Uhl, M.; Kübler, J. J. Phys.: Condes. Matter 1996, 8, 983. doi: 10.1088/0953-8984/8/8/009

    43. [43]

      (43) White, J. A.; Bird, D. M. Phys. Rev. B: Condes. Matter Mater. Phys. 1994, 50, 4954. doi: 10.1103/PhysRevB.50.4954

    44. [44]

      (44) vind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. Comput. Mater. Sci. 2003, 28, 250. doi: 10.1016/S0927-0256(03)00111-3

    45. [45]

      (45) Rohmann, C.; Metson, J. B.; Idriss, H. Phys. Chem. Chem. Phys. 2014, 16, 14287. doi: 10.1039/c4cp01373e

    46. [46]

      (46) Gilbert, B.; Frandsen, C.; Maxey, E. R.; Sherman, D. M. Phys. Rev. B 2009, 79, 035108. doi: 10.1103/PhysRevB.79.035108

    47. [47]

      (47) Al-Kuhaili, M. F.; Saleem, M.; Durrani, S. M. A. J. Alloy. Compd. 2012, 521, 178. doi: 10.1016/j.jallcom.2012.01.115

    48. [48]

      (48) Turkdogan, E. T.; Vinters, J. V. Metall. Trans. 1974, 5, 11.

    49. [49]

      (49) Dong, C. Q.; Sheng, S. H.; Qin, W.; Lu, Q.; Zhao, Y.; Wang, X. Q.; Zhang, J. J. Appl. Surf. Sci. 2011, 257, 8647. doi: 10.1016/j.apsusc.2011.05.042

    50. [50]

      (50) Wang, B.W.; Yan, R.; Lee, D. H.; Liang, D. T.; Zheng, Y.; Zhao, H. B.; Zheng, C. G. Energy Fuels 2008, 22, 1012. doi: 10.1021/ef7005673


  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    5. [5]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    6. [6]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    7. [7]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    12. [12]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

    15. [15]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    16. [16]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    17. [17]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    18. [18]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    19. [19]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    20. [20]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

Metrics
  • PDF Downloads(437)
  • Abstract views(746)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return