Citation: LI Zhao-Hui, LI Shi-Jiao, ZHOU Jin, ZHU Ting-Ting, SHEN Hong-Long, ZHUO Shu-Ping. Preparation and Supercapacitive Performance of N, S Co-Doped Activated Carbon Materials[J]. Acta Physico-Chimica Sinica, ;2015, 31(4): 676-684. doi: 10.3866/PKU.WHXB201501281
-
In this work, N, S co-doped microporous carbon materials were successfully prepared using human hair and sucrose as carbon precursors via a two-step method that combined hydrothermal treatment and post-KOH activation. The morphology, pore texture, and surface chemical properties of the activated carbon materials were investigated by scanning electron microscopy, transmission electron microscopy, N2 adsorption/desorption, X-ray photoelectron spectroscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. The electrochemical capacitive behavior of the prepared carbons was systematically studied in 6 mol·L-1 KOH electrolyte. The maximum specific surface area of the prepared carbons was found to be 1849.4 m2·g-1 with a porosity that mainly consisted of micropores. Nitrogen and sulfur contents varied from 1.6% to 2.5% and from 0.2% to 0.5% (atomic fraction (x)), respectively. The synergistic-positive effect of N, O, and S-containing groups caused the prepared carbons to exhibit a large pseudo-capacitance. High specific capacitances of up to 200 F·g-1 at 0.2 A·g-1 were observed, response to an energy density of 6.9 Wh·kg-1. At a power density of 10000 W·kg-1, the energy density was found to be 4.1 Wh·kg-1. The present work highlights the significance of this new strategy to prepare N, S co-doped carbon materials from renewable biomass.
-
-
[1]
(1) Horst, J. R.; Karl, F. K. Am. Chem. Soc. 1983, 7, 71.
-
[2]
(2) Ishida, M.; Jin, H. Ind. Eng. Chem. Res. 1996, 35, 2469. doi: 10.1021/ie950680s
-
[3]
(3) Fan, L. S.; Zeng, L.; Wang, W.; Luo, S.W. Energy Environ. Sci. 2012, 5, 7254. doi: 10.1039/c2ee03198a
-
[4]
(4) Adanez, J.; Abad, A.; Garcia-Labiano, F.; Gayan, P.; de Die , L. F. Prog. Energy Combust. Sci. 2012, 38, 215. doi: 10.1016/j.pecs.2011.09.001
-
[5]
(5) Zhang, Y.; Doroodchi, E.; Moghtaderi, B. Energy Fuels 2012, 26, 287.
-
[6]
(6) Fang, H.; Haibin, L.; Zengli, Z. Int. J. Chem. Eng. 2009, 710515
-
[7]
(7) Lyngfelt, A.; Leckner, B.; Mattisson, T. Chem. Eng. Sci. 2001, 56, 3101. doi: 10.1016/S0009-2509(01)00007-0
-
[8]
(8) Johansson, M.; Mattisson, T.; Lyngfelt, A. J. Therm. Sci. 2006, 10, 93. doi: 10.2298/TSCI0603093J
-
[9]
(9) Saha, C.; Bhattacharya, S. Int. J. Chem. Eng. 2011, 36, 12048.
-
[10]
(10) Cho, P.; Mattisson, T.; Lyngfelt, A. Fuels 2004, 83, 1215. doi: 10.1016/j.fuel.2003.11.013
-
[11]
(11) Zhao, H. B.; Liu, L. M.; Wang, B.W.; Xu, D.; Jiang, L. L.; Zheng, C. G. Energy Fuels 2008, 22, 898. doi: 10.1021/ef7003859
-
[12]
(12) Dennis, J. S.; Scott, S. A. Fuels 2010, 89, 1623. doi: 10.1016/j.fuel.2009.08.019
-
[13]
(13) Lee, J. B.; Park, C. S.; Choi, S. I.; Song, Y.W.; Kim, Y. H.; Yang, H. S. J. Ind. Engin. Chem. 2005, 11, 96.
-
[14]
(14) Yang, J. B.; Cai, N. S.; Li, Z. S. Energy Fuels 2007, 21, 360.
-
[15]
(15) Guo, L.; Zhao, H. B.; Ma, J. C.; Mei, D. F.; Zheng, C. G. Chem. Eng. Technol. 2014, 37, 1211. doi: 10.1002/ceat.v37.7
-
[16]
(16) Zhu, X.; Li, K. Z.; Wei, Y. G.; Wang, H.; Sun, L. Y. Fuels 2014, 28, 754. doi: 10.1021/ef402203a
-
[17]
(17) Wang, C. P.; Cui, H. R.; Di, H. S.; Guo, Q. J.; Huang, F. Fuels 2014, 28, 4162. doi: 10.1021/ef500354w
-
[18]
(18) Azimi, G.; Leion, H.; Mattisson, T.; Rydén, M.; Snijkers, F.; Lyngfelt, A. Ind. Eng. Chem. Res. 2014, 53, 10358. doi: 10.1021/ie500994m
-
[19]
(19) Qin, W.; Wang, Y.; Dong, C.; Zhang, J.; Chen, Q.; Yang, Y. Energ. Appl. Surf. Sci. 2013, 282, 718. doi: 10.1016/j.apsusc.2013.06.041
-
[20]
(20) Wang, B.W.; Yan, R.; Zhao, H. B.; Zheng, Y.; Liu, Z. H.; Zheng, C. G. Energy Fuels 2011, 25, 3344. doi: 10.1021/ef2004078
-
[21]
(21) Qin, W.; Chen, Q.; Wang, Y.; Dong, C.; Zhang, J.; Li, W.; Yang, Y. Energ. Appl. Surf. Sci. 2013, 266, 350. doi: 10.1016/j.apsusc.2012.12.023
-
[22]
(22) Wang, S. Z.; Wang, G. X.; Jiang, F.; Luo, M.; Li, H. Y. Energy Environ. Sci. 2010, 3, 1353. doi: 10.1039/b926193a
-
[23]
(23) Liu, L.; Zachariah, M. R. Energy Fuels 2013, 27, 4977. doi: 10.1021/ef400748x
-
[24]
(24) Bao, J.; Li, Z.; Cai, N. Ind. Eng. Chem. Res. 2013, 52, 6119. doi: 10.1021/ie400237p
-
[25]
(25) Ksepko, E.; Siriwardane, R. V.; Tian, H. J.; Simonyi, T.; Sciazko, M. Energy Fuels 2012, 26, 2461. doi: 10.1021/ef201441k
-
[26]
(26) Moghtaderi, B.; Song, H. Energy Fuels 2010, 24, 5359.
-
[27]
(27) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Nature 2008, 453, 638. doi: 10.1038/nature06964
-
[28]
(28) Xie, X.W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J. Nature 2009, 458, 746. doi: 10.1038/nature07877
-
[29]
(29) Zhou, X.; Xu, Q.; Lei, W.; Zhang, T.; Qi, X.; Liu, G.; Deng, K.; Yu, J. Small 2014, 10, 674. doi: 10.1002/smll.201301870
-
[30]
(30) Zhu, J.; Ng, K. Y. S.; Deng, D. Cryst. Growth Des. 2014, 14, 2811. doi: 10.1021/cg5000777
-
[31]
(31) Liu, X. H.; Zhang, J.; Wu, S. H.; Yang, D. J.; Liu, P.; Zhang, H. M.; Wang, S. R.; Yao, X. D.; Zhu, G. S.; Zhao, H. J. RSC Adv. 2012, 2, 6178. doi: 10.1039/c2ra20797d
-
[32]
(32) Guo, H.; Barnard, A. S. J. Colloid Interface Sci. 2012, 386, 315. doi: 10.1016/j.jcis.2012.07.011
-
[33]
(33) Cornell, R. M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses;Wiley-VCH: New York, USA, 2003.
-
[34]
(34) Dong, C. Q.; Liu, X. L.; Qin, W.; Lu, Q.; Wang, X. Q.; Shi, S. M.; Yang, Y. P. Appl. Surf. Sci. 2012, 258, 2562. doi: 10.1016/j.apsusc.2011.10.092
-
[35]
(35) Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Rev. Mod. Phys. 1992, 64, 1045. doi: 10.1103/RevModPhys.64.1045
-
[36]
(36) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 46, 6671. doi: 10.1103/PhysRevB.46.6671
-
[37]
(37) Leung, T. C.; Chan, C. T.; Harmon, B. N. Phys. Rev. B 1991, 44, 2923. doi: 10.1103/PhysRevB.44.2923
-
[38]
(38) Guo, H. B.; Barnard, A. S. Phys. Rev. B 2011, 83, 094112. doi: 10.1103/PhysRevB.83.094112
-
[39]
(39) Song, J. J.; Niu, X. Q.; Ling, L. X.; Wang, B. J. Fuel Process. Technol. 2013, 115, 26. doi: 10.1016/j.fuproc.2013.04.003
-
[40]
(40) Wong, K.; Zeng, Q. H.; Yu, A. B. J. Phys. Chem. C 2011, 115, 4656. doi: 10.1021/jp1108043
-
[41]
(41) Martin, G. J.; Cutting, R. S.; VauGhan, D. J.; Warren, M. C. Am. Mineral. 2009, 94, 1341. doi: 10.2138/am.2009.3029
-
[42]
(42) Sandratskii, L. M.; Uhl, M.; Kübler, J. J. Phys.: Condes. Matter 1996, 8, 983. doi: 10.1088/0953-8984/8/8/009
-
[43]
(43) White, J. A.; Bird, D. M. Phys. Rev. B: Condes. Matter Mater. Phys. 1994, 50, 4954. doi: 10.1103/PhysRevB.50.4954
-
[44]
(44) vind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. Comput. Mater. Sci. 2003, 28, 250. doi: 10.1016/S0927-0256(03)00111-3
-
[45]
(45) Rohmann, C.; Metson, J. B.; Idriss, H. Phys. Chem. Chem. Phys. 2014, 16, 14287. doi: 10.1039/c4cp01373e
-
[46]
(46) Gilbert, B.; Frandsen, C.; Maxey, E. R.; Sherman, D. M. Phys. Rev. B 2009, 79, 035108. doi: 10.1103/PhysRevB.79.035108
-
[47]
(47) Al-Kuhaili, M. F.; Saleem, M.; Durrani, S. M. A. J. Alloy. Compd. 2012, 521, 178. doi: 10.1016/j.jallcom.2012.01.115
-
[48]
(48) Turkdogan, E. T.; Vinters, J. V. Metall. Trans. 1974, 5, 11.
-
[49]
(49) Dong, C. Q.; Sheng, S. H.; Qin, W.; Lu, Q.; Zhao, Y.; Wang, X. Q.; Zhang, J. J. Appl. Surf. Sci. 2011, 257, 8647. doi: 10.1016/j.apsusc.2011.05.042
-
[50]
(50) Wang, B.W.; Yan, R.; Lee, D. H.; Liang, D. T.; Zheng, Y.; Zhao, H. B.; Zheng, C. G. Energy Fuels 2008, 22, 1012. doi: 10.1021/ef7005673
-
[1]
-
-
[1]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[2]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[3]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[4]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[5]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[6]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[7]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[8]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[9]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[10]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[11]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[12]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[13]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[14]
Yiming Lu , Xiang Xie , Xiaoqing Qiu , Yang Liu , Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061
-
[15]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[16]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[17]
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
-
[18]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[19]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[20]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[1]
Metrics
- PDF Downloads(437)
- Abstract views(746)
- HTML views(10)