Citation:
ZHENG Dong, YU Wei-Ming, ZHONG Bei-Jing. RP-3 Aviation Kerosene Surrogate Fuel and the Chemical Reaction Kinetic Model[J]. Acta Physico-Chimica Sinica,
;2015, 31(4): 636-642.
doi:
10.3866/PKU.WHXB201501231
-
A four-component RP-3 aviation kerosene surrogate fuel, comprising 40% n-decane/42% n-dodecane/ 13%ethycyclohexane/5%p-xylene (molar fraction), was presented. Experiments showed the physical and chemical similarity of the surrogate fuel to the real RP-3. Counterflow, twin-flame experiments were used to determine the laminar flame speeds of both the real and the surrogate fuel and showed that the surrogate fuel accurately modeled the burning rate of real RP-3. A semi-detailed chemical reaction mechanism for ignition and oxidation of the RP-3 surrogate fuel that consists of 168 species and 1089 elementary reactions has been developed. Experimental results validate the model and highlight its ability to accurately predict the ignition delay times and laminar flame speeds of real RP-3.
-
-
-
[1]
(1) Ma, H. A.; Jie, M. Z.; Zeng, W.; Chen, X. X. Journal of Aerospace Power 2013, 28 (3), 1139. [马洪安, 解茂昭, 曾文, 陈潇潇. 航空动力学报, 2013, 28 (3), 1139.]
-
[2]
(2) Fan, X. J.; Yu, G. Journal of Propulsion Technology 2006, 27 (2), 187. [范学军, 俞刚. 推进技术, 2006, 27 (2), 187.]
-
[3]
(3) Violi, A.; Yan, S.; Eddings, E. G.; Sarofim, A. F.; Granata, S.; Faravelli, T.; Ranzi, E. Combustion Science and Technology 2002, 174 (11-12), 399. doi: 10.1080/00102200215080
-
[4]
(4) Dooley, S.; Won, S. H.; Heyne, J.; Farouk, T. I.; Ju, Y.; Dryer, F. L.; Kumar, K.; Hui, X.; Sung, C. J.; Wang, H.; Oehlschlaeger, M. A.; Iyer, V.; Iyer, S.; Litzinger, T. A.; Santoro, R. J.; Malewicki, T.; Brezinsky, K. Combustion and Flame 2012, 159 (4), 1444. doi: 10.1016/j.combustflame.2011.11.002
-
[5]
(5) Zheng, D.; Zhong, B. J. Acta Phys. -Chim. Sin. 2012, 28 (9), 2029. [郑东, 钟北京. 物理化学学报. 2012, 28 (9), 2029.] doi: 10.3866/PKU.WHXB201207042
-
[6]
(6) Pitz, W. J.; Cernansky, N. P.; Dryer, F. L.; E lfopoulos, F. N.; Farrell, J. T.; Friend, D. G.; Pitsch, H. SAE Technical Paper 2007-01-0175, 2007. doi: 10.4271/2007-01-0175
-
[7]
(7) Pitz, W. J.; Mueller, C. J. Progress in Energy and Combustion Science 2011, 37 (3), 330. doi: 10.1016/j.pecs.2010.06.004
-
[8]
(8) Dagaut, P.; Reuillon, M.; Boettner, J. C.; Cathonnet, M. Symposium (International) on Combustion 1994, 25 (1), 919. doi: 10.1016/S0082-0784(06)80727-7
-
[9]
(9) Dooley, S.; Won, S. H.; Chaos, M.; Heyne, J.; Ju, Y.; Dryer, F. L.; Kumar, K.; Sung, C. J.; Wang, H.; Oehlschlaeger, M. A.; Santoro, R. J.; Litzinger, T. A. Combustion and Flame 2010, 157 (12), 2333. doi: 10.1016/j.combustflame.2010.07.001
-
[10]
(10) Guéret, C.; Cathonnet, M.; Boettner, J. C.; Gaillard, F. Symposium (International) on Combustion 1991, 23 (1), 211. doi: 10.1016/S0082-0784(06)80261-4
-
[11]
(11) Mont mery, C.; Cannon, S.; Mawid, M.; Sekar, B. Reduced Chemical Kinetic Mechanisms for JP-8 Combustion. In 40th AIAAAerospace Sciences Meeting & Exhibit, Aerospace Sciences Meetings, Reno, Nevada, USA. Jan 14-17, 2002; AIAA Member, Ed.; American Institute of Aeronautics and Astronautics: Reston, VA, 2002. doi:10.2514/6.2002-336
-
[12]
(12) Malewicki, T.; Gudiyella, S.; Brezinsky, K. Combustion and Flame 2013, 160 (1), 17. doi: 10.1016/j.combustflame. 2012.09.013
-
[13]
(13) Xiao, B. G.; Yang, S. H.; Zhao, H. Y.; Qian, W. Q.; Le, J. L. Journal of Aerospace Power 2010, 25 (9), 1948. [肖保国, 杨顺华, 赵慧勇, 钱炜祺, 乐嘉陵. 航空动力学报, 2010, 25 (9), 1948.]
-
[14]
(14) Zeng, W.; Li, H. X.; Ma, H. A.; Liang, S.; Cheng, B. D. Journal of Propulsion Technology 2014, 35 (8), 1139. [曾文, 李海霞, 马洪安, 梁双, 陈保东. 推进技术, 2014, 35 (8), 1139.]
-
[15]
(15) Dagaut, P. Physical Chemistry Chemical Physics 2002, 4 (11), 2079. doi: 10.1039/b110787a
-
[16]
(16) Edwards, T.; Maurice, L. Q. Journal of Propulsion and Power 2001, 17 (2), 461. doi: 10.2514/2.5765
-
[17]
(17) Zhu, Y. H.; Yu, C. X.; Li, Z. M.; Mi, Z. T.; Zhang, X.W. Petrochemical Technology 2006, 35 (12), 1152. [朱玉红, 余彩香, 李子木, 米镇涛, 张香文. 石油化工, 2006, 35 (12), 1152.]
-
[18]
(18) Holley, A. T.; You, X. Q.; Dames, E.; Wang, H.; E lfopoulos, F. N. Proceedings of the Combustion Institute 2009, 32 (1), 1157. doi: 10.1016/j.proci.2008.05.067
-
[19]
(19) Yu, W. M.; Zhong, B. J.; Yuan, Z.; Wang, G. Z. Journal of Propulsion Technology 2014, 35 (1), 70. [于维铭, 钟北京, 袁振, 王治国. 推进技术, 2014, 35 (1), 70.]
-
[20]
(20) Wang, H.; You, X.; Joshi, A. V.; Davis, S. G.; Laskin, A.; E lfopoulos, F.; Chung K. L. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. http://ignis.usc.edu/USC_Mech_II.htm (accessed Oct 1, 2014).
-
[21]
(21) You, X.; E lfopoulos, F. N.; Wang, H. Proceedings of the Combustion Institute 2009, 32 (1), 403. doi: 10.1016/j.proci.2008.06.041
-
[22]
(22) Chang, Y.; Jia, M.; Liu, Y.; Li, Y.; Xie, M.; Yin, H. Energy & Fuels 2013, 27 (6), 3467. doi: 10.1021/ef400460d
-
[23]
(23) Sirjean, B.; Dames, E.; Sheen, D. A.; E lfopoulos, F. N.; Wang, H.; Davidson, D. F.; Hanson, R. K.; Pitsch, H.; Bowman, C. T.; Law, C. K.; Tsang, W.; Cernansky, N. P.; Miller, D. L.; Violi, A.; Lindstedt, R. P. A High-Temperature Chemical Kinetic Model of n-Alkane, Cyclohexane, and Methyl-, Ethyl-, n-Propyl and n-Butyl-cyclohexane Oxidation at High Temperatures, JetSurF version 1.1. http://melchior.usc.edu/JetSurF/JetSurF1.1 (accessed Oct 1, 2014).
-
[24]
(24) Zhong, B. J.; Zheng, D. Fuel 2014, 128 (15), 458.
-
[25]
(25) Zheng, D.; Zhang, Y. P.; Zhong, B. J. Acta Phys. -Chim. Sin. 2013, 29 (6), 1154. [郑东, 张云鹏, 钟北京. 物理化学学报, 2013, 29 (6), 1154.] doi: 10.3866/PKU.WHXB201303201
-
[26]
(26) Li, Y. Y. Experimental and Kinetic Modeling Study of Premixed Aromatic Hydrocarbon Flames at Low Pressure. Ph. D. Dissertation, University of Science and Technology of China, Hefei, 2010. [李玉阳. 芳烃燃料低压预混火焰的实验和动力学模型研究[D]. 合肥: 中国科学技术大学, 2010.]
-
[27]
(27) Gaïl, S.; Dagaut, P. Combustion and Flame 2005, 141 (3), 281. doi: 10.1016/j.combustflame.2004.12.020
-
[28]
(28) Kee, R. J.; Rupley, F. M.; Miller, J. A. CHEMKIN Release 4.1; Reaction Design: San Die , CA. 2006.
-
[1]
-
-
-
[1]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[2]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[3]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[4]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[5]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[6]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[7]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[8]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[9]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[10]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[11]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[12]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[13]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[14]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[15]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[16]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[17]
Houzhen Xiao , Mingyu Wang , Yong Liu , Bangsheng Lao , Lingbin Lu , Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011
-
[18]
Shuyong Zhang , Yaxian Zhu , Wenqing Zhang , Yuzhi Wang , Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026
-
[19]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[20]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[1]
Metrics
- PDF Downloads(382)
- Abstract views(1200)
- HTML views(122)