Citation: ZHENG Dong, YU Wei-Ming, ZHONG Bei-Jing. RP-3 Aviation Kerosene Surrogate Fuel and the Chemical Reaction Kinetic Model[J]. Acta Physico-Chimica Sinica, ;2015, 31(4): 636-642. doi: 10.3866/PKU.WHXB201501231 shu

RP-3 Aviation Kerosene Surrogate Fuel and the Chemical Reaction Kinetic Model

  • Received Date: 13 October 2014
    Available Online: 23 January 2015

    Fund Project: 国家自然科学基金(91441113)资助项目 (91441113)

  • A four-component RP-3 aviation kerosene surrogate fuel, comprising 40% n-decane/42% n-dodecane/ 13%ethycyclohexane/5%p-xylene (molar fraction), was presented. Experiments showed the physical and chemical similarity of the surrogate fuel to the real RP-3. Counterflow, twin-flame experiments were used to determine the laminar flame speeds of both the real and the surrogate fuel and showed that the surrogate fuel accurately modeled the burning rate of real RP-3. A semi-detailed chemical reaction mechanism for ignition and oxidation of the RP-3 surrogate fuel that consists of 168 species and 1089 elementary reactions has been developed. Experimental results validate the model and highlight its ability to accurately predict the ignition delay times and laminar flame speeds of real RP-3.

  • 加载中
    1. [1]

      (1) Ma, H. A.; Jie, M. Z.; Zeng, W.; Chen, X. X. Journal of Aerospace Power 2013, 28 (3), 1139. [马洪安, 解茂昭, 曾文, 陈潇潇. 航空动力学报, 2013, 28 (3), 1139.]

    2. [2]

      (2) Fan, X. J.; Yu, G. Journal of Propulsion Technology 2006, 27 (2), 187. [范学军, 俞刚. 推进技术, 2006, 27 (2), 187.]

    3. [3]

      (3) Violi, A.; Yan, S.; Eddings, E. G.; Sarofim, A. F.; Granata, S.; Faravelli, T.; Ranzi, E. Combustion Science and Technology 2002, 174 (11-12), 399. doi: 10.1080/00102200215080

    4. [4]

      (4) Dooley, S.; Won, S. H.; Heyne, J.; Farouk, T. I.; Ju, Y.; Dryer, F. L.; Kumar, K.; Hui, X.; Sung, C. J.; Wang, H.; Oehlschlaeger, M. A.; Iyer, V.; Iyer, S.; Litzinger, T. A.; Santoro, R. J.; Malewicki, T.; Brezinsky, K. Combustion and Flame 2012, 159 (4), 1444. doi: 10.1016/j.combustflame.2011.11.002

    5. [5]

      (5) Zheng, D.; Zhong, B. J. Acta Phys. -Chim. Sin. 2012, 28 (9), 2029. [郑东, 钟北京. 物理化学学报. 2012, 28 (9), 2029.] doi: 10.3866/PKU.WHXB201207042

    6. [6]

      (6) Pitz, W. J.; Cernansky, N. P.; Dryer, F. L.; E lfopoulos, F. N.; Farrell, J. T.; Friend, D. G.; Pitsch, H. SAE Technical Paper 2007-01-0175, 2007. doi: 10.4271/2007-01-0175

    7. [7]

      (7) Pitz, W. J.; Mueller, C. J. Progress in Energy and Combustion Science 2011, 37 (3), 330. doi: 10.1016/j.pecs.2010.06.004

    8. [8]

      (8) Dagaut, P.; Reuillon, M.; Boettner, J. C.; Cathonnet, M. Symposium (International) on Combustion 1994, 25 (1), 919. doi: 10.1016/S0082-0784(06)80727-7

    9. [9]

      (9) Dooley, S.; Won, S. H.; Chaos, M.; Heyne, J.; Ju, Y.; Dryer, F. L.; Kumar, K.; Sung, C. J.; Wang, H.; Oehlschlaeger, M. A.; Santoro, R. J.; Litzinger, T. A. Combustion and Flame 2010, 157 (12), 2333. doi: 10.1016/j.combustflame.2010.07.001

    10. [10]

      (10) Guéret, C.; Cathonnet, M.; Boettner, J. C.; Gaillard, F. Symposium (International) on Combustion 1991, 23 (1), 211. doi: 10.1016/S0082-0784(06)80261-4

    11. [11]

      (11) Mont mery, C.; Cannon, S.; Mawid, M.; Sekar, B. Reduced Chemical Kinetic Mechanisms for JP-8 Combustion. In 40th AIAAAerospace Sciences Meeting & Exhibit, Aerospace Sciences Meetings, Reno, Nevada, USA. Jan 14-17, 2002; AIAA Member, Ed.; American Institute of Aeronautics and Astronautics: Reston, VA, 2002. doi:10.2514/6.2002-336

    12. [12]

      (12) Malewicki, T.; Gudiyella, S.; Brezinsky, K. Combustion and Flame 2013, 160 (1), 17. doi: 10.1016/j.combustflame. 2012.09.013

    13. [13]

      (13) Xiao, B. G.; Yang, S. H.; Zhao, H. Y.; Qian, W. Q.; Le, J. L. Journal of Aerospace Power 2010, 25 (9), 1948. [肖保国, 杨顺华, 赵慧勇, 钱炜祺, 乐嘉陵. 航空动力学报, 2010, 25 (9), 1948.]

    14. [14]

      (14) Zeng, W.; Li, H. X.; Ma, H. A.; Liang, S.; Cheng, B. D. Journal of Propulsion Technology 2014, 35 (8), 1139. [曾文, 李海霞, 马洪安, 梁双, 陈保东. 推进技术, 2014, 35 (8), 1139.]

    15. [15]

      (15) Dagaut, P. Physical Chemistry Chemical Physics 2002, 4 (11), 2079. doi: 10.1039/b110787a

    16. [16]

      (16) Edwards, T.; Maurice, L. Q. Journal of Propulsion and Power 2001, 17 (2), 461. doi: 10.2514/2.5765

    17. [17]

      (17) Zhu, Y. H.; Yu, C. X.; Li, Z. M.; Mi, Z. T.; Zhang, X.W. Petrochemical Technology 2006, 35 (12), 1152. [朱玉红, 余彩香, 李子木, 米镇涛, 张香文. 石油化工, 2006, 35 (12), 1152.]

    18. [18]

      (18) Holley, A. T.; You, X. Q.; Dames, E.; Wang, H.; E lfopoulos, F. N. Proceedings of the Combustion Institute 2009, 32 (1), 1157. doi: 10.1016/j.proci.2008.05.067

    19. [19]

      (19) Yu, W. M.; Zhong, B. J.; Yuan, Z.; Wang, G. Z. Journal of Propulsion Technology 2014, 35 (1), 70. [于维铭, 钟北京, 袁振, 王治国. 推进技术, 2014, 35 (1), 70.]

    20. [20]

      (20) Wang, H.; You, X.; Joshi, A. V.; Davis, S. G.; Laskin, A.; E lfopoulos, F.; Chung K. L. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. http://ignis.usc.edu/USC_Mech_II.htm (accessed Oct 1, 2014).

    21. [21]

      (21) You, X.; E lfopoulos, F. N.; Wang, H. Proceedings of the Combustion Institute 2009, 32 (1), 403. doi: 10.1016/j.proci.2008.06.041

    22. [22]

      (22) Chang, Y.; Jia, M.; Liu, Y.; Li, Y.; Xie, M.; Yin, H. Energy & Fuels 2013, 27 (6), 3467. doi: 10.1021/ef400460d

    23. [23]

      (23) Sirjean, B.; Dames, E.; Sheen, D. A.; E lfopoulos, F. N.; Wang, H.; Davidson, D. F.; Hanson, R. K.; Pitsch, H.; Bowman, C. T.; Law, C. K.; Tsang, W.; Cernansky, N. P.; Miller, D. L.; Violi, A.; Lindstedt, R. P. A High-Temperature Chemical Kinetic Model of n-Alkane, Cyclohexane, and Methyl-, Ethyl-, n-Propyl and n-Butyl-cyclohexane Oxidation at High Temperatures, JetSurF version 1.1. http://melchior.usc.edu/JetSurF/JetSurF1.1 (accessed Oct 1, 2014).

    24. [24]

      (24) Zhong, B. J.; Zheng, D. Fuel 2014, 128 (15), 458.

    25. [25]

      (25) Zheng, D.; Zhang, Y. P.; Zhong, B. J. Acta Phys. -Chim. Sin. 2013, 29 (6), 1154. [郑东, 张云鹏, 钟北京. 物理化学学报, 2013, 29 (6), 1154.] doi: 10.3866/PKU.WHXB201303201

    26. [26]

      (26) Li, Y. Y. Experimental and Kinetic Modeling Study of Premixed Aromatic Hydrocarbon Flames at Low Pressure. Ph. D. Dissertation, University of Science and Technology of China, Hefei, 2010. [李玉阳. 芳烃燃料低压预混火焰的实验和动力学模型研究[D]. 合肥: 中国科学技术大学, 2010.]

    27. [27]

      (27) Gaïl, S.; Dagaut, P. Combustion and Flame 2005, 141 (3), 281. doi: 10.1016/j.combustflame.2004.12.020

    28. [28]

      (28) Kee, R. J.; Rupley, F. M.; Miller, J. A. CHEMKIN Release 4.1; Reaction Design: San Die , CA. 2006.


  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    3. [3]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    4. [4]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    5. [5]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    6. [6]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    7. [7]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    8. [8]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    11. [11]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    12. [12]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    13. [13]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    14. [14]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    15. [15]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    16. [16]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    17. [17]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    18. [18]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    19. [19]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    20. [20]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

Metrics
  • PDF Downloads(382)
  • Abstract views(1029)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return