Citation: PAN Jia-Ye. Thermodynamic Calculations for UO2 Powder Fabrication by a Dry Conversion Process[J]. Acta Physico-Chimica Sinica, ;2015, 31(S1): 19-24. doi: 10.3866/PKU.WHXB2014Ac19 shu

Thermodynamic Calculations for UO2 Powder Fabrication by a Dry Conversion Process

  • Corresponding author: PAN Jia-Ye, 

  • A dry conversion process to produce UO2 powder is reported. Uranium fluoride (UF6) is directly hydrolyzed with water vapor from a concentric nozzle to form uranyl fluoride (UO2F2), which is transferred to a rotary kiln by a screw and reduced to ceramic-grade uranium dioxide (UO2) powder with backward mixing gases of vapor and hydrogen. Several of the main reactions and thermodynamics calculations for conversion of gaseous UF6 to UO2 powder are reported, including reactions for UO2F2+H2O/H2→UO2/UO3 and UO2+HF→UF4. The influence of the temperature of the first zone and the gas atmosphere of H2O-H2-HF on the fluorization of UO2 by HF in term of thermodynamics are also discussed. Moreover, the influences of the dry conversion process parameters on the UO2 physical properties are analyzed by qualification test results.
  • 加载中
    1. [1]

      (1) Duan, D. Z. Nuclear Power Engineering and Technology 2004, No. 1, 34. [段德智. 核电工程与技术, 2004, No. 1, 34.]

    2. [2]

      (2) Han, R. P. Nuclear Power Engineering and Technology 1996, No. 4, 34. [韩瑞平. 核电工程与技术, 1996, No. 4, 34.]

    3. [3]

      (3) Duan, D. Z. The Precipitation Mechanism and Process of Uranium Acid Ammonium. In PWR Fuel Element Fabrication Proceedings; Chang, X., Wu, Z. M. Eds.; Atomic Energy Press: Beijing, 2004; pp 33-41. [段德智. 铀酸铵的沉淀机理和工艺选择. In 压水堆燃料元件制造文集. 畅欣, 伍志明编. 北京: 原子能出版社, 2004: 33-41.]

    4. [4]

      (4) Feugier, A.; Chatuzange le Goubet. Method and Apparatus for Direct Conversion of Uranium Hexafluoride into Uranium Oxide. US Patent 6136285, 2000-10-24.

    5. [5]

      (5) Hart, E. J.; Shuck, L. D.; Ward, L. L. Production of Uranium Dioxide. CA Patent 1089192, 1980-11-11.

    6. [6]

      (6) Kenneth, C. R.; Word, L. L.; James, E. H. Ceramic Bulletin 1979, 58 (2), 219.

    7. [7]

      (7) Wu, Z. M.; Zhang, X. R.; Wang, J. Z. The Manufacturing Practice of Uranium Dioxide Pellets for Nuclear Power. In PWR Fuel Element Fabrication Proceedings; Chang, X., Wu, Z. M. Eds.; Atomic Energy Press: Beijing, 2004; pp 101-107. [伍志明, 张行如, 王景震. 核电用二氧化铀芯块的制造实践. In 压水堆燃料元件制造文集. 畅欣, 伍志明编; 北京: 原子能出版社, 2004: 101-107.]

    8. [8]

      (8) Hou, R.; Goddard, T. Ind. Eng. Chem. Res. 2007, 46, 2020. doi:10.1021/ie061289h

    9. [9]

      (9) Galkin, N. P.; Veryatin, U. D.; Yakhonin, I. F.; Lugonov, A. F.; Dymkov, Y. M. Atomic Energy 1982, 52 (1), 45. doi: 10.1007/BF01121773

    10. [10]

      (10) Ferris, L. M.; Gabbard, E. F. Kinetics of the Thermal Decomposition of Uranyl Fluoride. In Chemistry-General ORNL-2401, 13th ed.; OAK Ridge National Laboratory: Tennessee, 1958; pp 1-22.

    11. [11]

      (11) Grenthe, I.; Fuger, J.; Konings, R. J. M.; Lemire, R. J. Chemical Thermodynamics of Uranium. http://www.oecd-nea.org/dbtdb/pubs/uranium.pdf (accessed Mar 20, 2014).

    12. [12]

      (12) An, C. M.; Kim, C. G.; Lee, C. Y. Korean Journal of Materials Research 2002, 10 (2), 166.

    13. [13]

      (13) Knudsen, I. E.; Hootman, H. E.; Levite, N. M. Nuclear Science and Engineering 1964, 20 (3), 259.

    14. [14]

      (14) Daniel, H.; Daniel, C. M.; Felton, H. Process to Produce Commercial Grand Anhydrous Hydrogen Fluoride (AHF) and Uranium Oxide from the Defluorination of UF6. US Patent 6352677B1, 2002-03-05.

    15. [15]

      (15) Hou, R.; Goddard, T. Ind. Eng. Chem. Res. 2007, 46, 2020. doi: 10.1021/ie061289h

    16. [16]

      (16) Patisson, F.; Ablitzer-Thouroude, C.; Hébrarda, S.; Ablitzer, D. Prédiction de l'évolution granulométrique et morphologique d'une poudre dans un four tournant, http://arxiv.org/ftp/arxiv/papers/0712/0712.2139.pdf (accessed Dec 25, 2014).

  • 加载中
    1. [1]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    2. [2]

      Qin WangHan LuoLuli WangLing HuangLiling CaoXuehua DongGuohong Zou . KSb2F7·2KNO3: Unveiling the peak birefringence in inorganic antimony oxysalts. Chinese Chemical Letters, 2025, 36(7): 110173-. doi: 10.1016/j.cclet.2024.110173

    3. [3]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    4. [4]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    5. [5]

      Lan YangYu LiMou JiangRui ZhouHengjiang CongMinghui YangLei ZhangShenhui LiYunhuang YangMaili LiuXin ZhouZhong-Xing JiangShizhen Chen . Fluorinated [2]rotaxanes as sensitive 19F MRI agents: Threading for higher sensitivity. Chinese Chemical Letters, 2024, 35(10): 109512-. doi: 10.1016/j.cclet.2024.109512

    6. [6]

      Yanqiu XuXuanli ChenYin LiKeyu ZhangShaoze ZhangJunxian HuYaochun Yao . Progress in Na2FePO4F cathodes for energy storage: Fabrication, modification and application. Chinese Chemical Letters, 2025, 36(12): 110574-. doi: 10.1016/j.cclet.2024.110574

    7. [7]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    8. [8]

      Ziyi XiaoXinyi MaLinping WangHaobin HuEnzhou Liu . Efficient photocatalytic conversion H2S over NiS2/twinned-Mn0.5Cd0.5S Schottky/S-scheme homojunction in Na2S/Na2SO3 solution. Acta Physico-Chimica Sinica, 2026, 42(4): 100171-0. doi: 10.1016/j.actphy.2025.100171

    9. [9]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-0. doi: 10.3866/PKU.WHXB202408015

    10. [10]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    11. [11]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    12. [12]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    13. [13]

      Xiaomin Kang Chuanbao Jiao . Application of Metal-Organic Frameworks in CO2 Catalytic Conversion: Promoting “Double Carbon” Actions for a Beautiful China. University Chemistry, 2026, 41(2): 208-217. doi: 10.12461/PKU.DXHX202503011

    14. [14]

      Yanping QiuJiatong ZhangLinping LiYangqin GaoNing LiLei Ge . MOF-derived g-C3N4/ZnIn2S4 S-scheme heterojunction: interface-engineering enhanced photocatalytic NO conversion. Acta Physico-Chimica Sinica, 2026, 42(4): 100175-0. doi: 10.1016/j.actphy.2025.100175

    15. [15]

      Peng-Fei LiChun-Li HuBo ZhangJiang-Gao MaoFang Kong . From HgGa2(SeO3)4 to Hg2Ga(SeO3)2F: The first Hg-based selenite birefringent crystal triggered by linear groups and fluoride ions. Chinese Chemical Letters, 2026, 37(2): 110588-. doi: 10.1016/j.cclet.2024.110588

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    19. [19]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(279)
  • Abstract views(1195)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return