Citation: SUN Bo, LIU Hai-Feng, SONG Hai-Feng, ZHENG Hui. Microdynamics Simulations of the Hydrogen-Corrosion Resistance of Passivation Layers on Pu Surface[J]. Acta Physico-Chimica Sinica, ;2015, 31(S1): 81-89. doi: 10.3866/PKU.WHXB2014Ac16 shu

Microdynamics Simulations of the Hydrogen-Corrosion Resistance of Passivation Layers on Pu Surface

  • Corresponding author: SUN Bo, 
  • Fund Project: 中国工程物理研究院科学技术发展专项基金(9090707)资助项目 (9090707)

  • Based on the non-local van der Waals density functional (vdW-DF)+U scheme, we have performed a first-principles molecular dynamics (FPMD) study of the interaction dynamics for H2 impingement against the Pu oxide (PuO2) and Pu nitride (PuN) passivation layers on Pu metal surface. Results show that, except for weak physisorption, both the PuO2 and PuN surfaces are so difficult to access that almost all of the H2 molecules will bounce back to the vacuum when their initial kinetic energies are not sufficient. Although dissociative adsorption of H2 on PuO2 surfaces is found to be very exothermic, the collision-induced dissociation barriers of H2 are calculated to be very high. Unfortunately, PuO2 can be reduced to α-Pu2O3 under oxygen-lean conditions. Molecular H2 can easily penetrate and diffuse in α-Pu2O3, and, as a result, α-Pu2O3 can promote the hydrogenation of Pu metal. Unlike PuO2, PuN is found to be a stable and uniform passivation layer against hydrogen-corrosion of Pu, and the interacting system of PuN and H is shown to be thermodynamically unstable. Overall, the current study reveals the different hydrogen-corrosion resistances of PuO2 and PuN passivation layers, which have implications for the interpretation of experimental observations and will be helpful to understand the surface corrosion and passivation of Pu metal.
  • 加载中
    1. [1]

      (1) (a) Santini, P.; Carretta, S.; Amoretti, G. Rev. Mod. Phys. 2009, 81, 807. doi: 10.1103/RevModPhys.81.807

    2. [2]

      (b) Moore, K. T.; Laan, V. G. Rev. Mod. Phys. 2009, 81, 235.

    3. [3]

      (2) Hecker, S. S. Journal of the Minerals, Metals and Materials Society 2003, 55, 19.

    4. [4]

      (3) (a) Hecker, S. S.; Martz, J. C. Los Alamos Sci. 2000, 26, 238.

    5. [5]

      (b) Haschke, J. M.; Allen, T. H.; Morales, L. A. Los Alamos Sci. 2000, 26, 252.

    6. [6]

      (4) Farr, J. D.; Schulze, R. K.; Neu, M. P. J. Nucl. Mater. 2004, 328, 124. doi: 10.1016/j.jnucmat.2004.04.001

    7. [7]

      (5) Butterfield, M. T.; Durakiewicz, T.; Guziewicz, E.; Joyce, J. J.; Arko, A. J.; Graham, K. S.; Moore, D. P.; Morales, L. A. Surf. Sci. 2004, 571, 74.; 2006, 600, 1637.

    8. [8]

      (6) Gouder, T.; Seibert, A.; Havela, L.; Rebizant, J. Surf. Sci. 2007, 601, L77.

    9. [9]

      (7) Morrall, P.; Tull, S.; Glascott, J.; Roussel, P. J. Alloy. Compd. 2007, 444, 352.

    10. [10]

      (8) Seibert, A.; Gounder, T.; Huber, F. J. Nucl. Mater. 2009, 389, 470. doi: 10.1016/j.jnucmat.2009.03.002

    11. [11]

      (9) Dinh, L. N.; Haschke, J. M.; Saw, C. K.; Allen, P. G.; McLean, W. J. Nucl. Mater. 2011, 408, 171. doi: 10.1016/j.jnucmat.2010.11.026

    12. [12]

      (10) McGillivray, G.W.; Knowles, J. P.; Findlay, I. M.; Dawes, M. J. J. Nucl. Mater. 2011, 412, 35. doi: 10.1016/j.jnucmat.2011.01.123

    13. [13]

      (11) Zhang, Y. B.; Meng, D. Q.; Xu, Q. Y. J. Nucl. Mater. 2010, 397, 31. doi: 10.1016/j.jnucmat.2009.12.002

    14. [14]

      (12) Yang, J. H.; Xu, J. L.; Li, L.; Wei, S. H. Acta Phys. -Chim. Sin. 2014, 30, 1821. [杨建辉, 许嘉琳, 李林, 韦世豪. 物理化学学报, 2014, 30, 1821.] doi: 10.3866/PKU.WHXB201408192

    15. [15]

      (13) Xu, K.; Feng, J.; Chu, Q.; Zhang, L. L.; Li, W. Y. Acta Phys. -Chim. Sin. 2014, 30, 2063. [徐坤, 冯杰, 褚绮, 张丽丽, 李文英. 物理化学学报, 2014, 30, 2063.] doi: 10.3866/PKU.WHXB201409221

    16. [16]

      (14) Luo, Y. Q.; Qiu, M.; Yang, W.; Zhu, J.; Li, Y.; Huang, X.; Zhang, Y. F. J. Acta Phys. -Chim. Sin. 2014, 30, 2224. [罗云清, 邱美, 杨伟, 朱佳, 李奕, 黄昕, 章永凡. 物理化学学报, 2014, 30, 2224.] doi: 10.3866/PKU.WHXB201410101

    17. [17]

      (15) Caciuffo, R.; Oppeneer, P. M. MRS Bulletin 2011, 36, 178. doi: 10.1557/mrs.2011.34

    18. [18]

      (16) Liu, X. Y.; Andersson, D. A.; Uberuaga, B. P. J. Mater. Sci. 2012, 47, 7367. doi: 10.1007/s10853-012-6471-6

    19. [19]

      (17) (a) Sun, B.; Zhang, P.; Zhao, X. G. J. Chem. Phys. 2008, 128, 084705. doi: 10.1063/1.2833553

    20. [20]

      (b) Sun, B.; Zhang, P. Chin. Phys. B 2008, 17, 1364.

    21. [21]

      (18) Sun, B.; Liu, H. F.; Song, H. F.; Zhang, G. C.; Zheng, H.; Zhao, X. G.; Zhang, P. J. Nucl. Mater. 2012, 426, 139. doi: 10.1016/j.jnucmat.2012.02.029

    22. [22]

      (19) Sun, B.; Liu, H. F.; Song, H. F.; Zhang, G. C.; Zheng, H.; Zhao, X. G.; Zhang, P. Phys. Lett. A 2012, 376, 2672. doi: 10.1016/j.physleta.2012.07.030

    23. [23]

      (20) Sun, B.; Liu, H. F.; Song, H. F.; Zhang, G. C.; Zheng, H.; Zhao, X. G.; Zhang, P. J. Chem. Phys. 2014, 140, 164709. doi: 10.1063/1.4873418

    24. [24]

      (21) (a) Jomard, G.; Amadon, B.; Bottin, F.; Torrent, M. Phys. Rev. B 2008, 84, 195469.

    25. [25]

      (b) Jomard, G.; Bottin, F. Phys. Rev. B 2011, 84, 195469.

    26. [26]

      (22) Anderson, D. A.; Lezama, J.; Uberuaga, B. P.; Deo, C.; Conradson, S. D. Phys. Rev. B 2009, 79, 024110. doi: 10.1103/PhysRevB.79.024110

    27. [27]

      (23) Wen, X. D.; Martin, R. L.; Henderson, T. M.; Scuseria, G. E. Chem. Rev. 2013, 113, 1063. doi: 10.1021/cr300374y

    28. [28]

      (24) (a) Zhang, P.; Wang, B. T.; Zhao, X. G. Phys. Rev. B 2010, 82, 144110. doi: 10.1103/PhysRevB.82.144110

    29. [29]

      (b)Wang, B. T. ; Shi, H. L.; Li, W. D.; Zhang, P. Phys. Rev. B 2010, 81, 045119.

    30. [30]

      (25) Havela, L.; Wastin, F.; Rebizant, J.; Gounder, T. Phys. Rev. B 2003, 68, 085101. doi: 10.1103/PhysRevB.68.085101

    31. [31]

      (26) Tasker, P.W. Solid State Phys. 1979, 12, 4977. doi: 10.1088/0022-3719/12/22/036

  • 加载中
    1. [1]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    2. [2]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    9. [9]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    10. [10]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    13. [13]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    16. [16]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    17. [17]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    18. [18]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    19. [19]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    20. [20]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

Metrics
  • PDF Downloads(244)
  • Abstract views(782)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return