Citation: XU Zhen, LU Chun-Hai, CHEN Min, CHEN Wen-Kai, HUANG Shuo, ZHANG Qi. Simulation of Uranium Formed in Groundwater of a Low-Level Radioactive Waste Repository Site in Southwest China[J]. Acta Physico-Chimica Sinica, ;2015, 31(S1): 45-48. doi: 10.3866/PKU.WHXB2014Ac05 shu

Simulation of Uranium Formed in Groundwater of a Low-Level Radioactive Waste Repository Site in Southwest China

  • Corresponding author: LU Chun-Hai, 
  • Fund Project: 国家自然科学基金(41273031) (41273031) 四川省教育厅重点科研项目(13ZA0067) (13ZA0067) 贵州省教育厅科技项目(2011010) (2011010) 成都理工大学科研启动项目(KR1115) (KR1115) 核废物与环境安全国防重点学科实验室开放基金(10zxnk01) (10zxnk01)放射性地质与勘探技术国防重点学科实验室开放基金(2011RGET022)资助 (2011RGET022)

  • PHREEQC software was used to study the chemical form of uranium based on the chemical composition of groundwater from a low-level radioactive waste repository located in southwest China. The effects of pH, temperature, and pE (the equilibrium state of electronic activity) on the distribution in uranium chemical form were studied. The results show that uranium presents in the VI chemical valence and [UO2(CO3)2]2-, [UO2(CO3)3]4-, and UO2CO3 forms when pH=7.6, T=12.2 ℃, and pE=4 in groundwater. Temperature and pH strongly impact the distribution of the uranium chemical form. However, pE has little effect on the chemical form distribution. Therefore, pH and groundwater temperature should be taken key considerations during the selection of waste landfill sites.
  • 加载中
    1. [1]

      (1) Kang, M. L.; Jiang, M. L.; Yang, Z.W.; Chen, F. R.; Liu, C. L. Journal of Nuclear and Radiochemistry 2013, 35 (3), 160. [康明亮, 蒋美玲, 杨颛维, 陈繁荣, 刘春立. 核化学与放射化学, 2013, 35 (3), 160.]

    2. [2]

      (2) Chen, X. S.; Kang, H. J.; Zhang, D.; Li, Q.W. Chemical Research and Application 2007, 19 (10), 1118. [陈戏三, 康厚军, 张东, 李全伟. 化学研究与应用, 2007, 19 (10), 1118.]

    3. [3]

      (3) Xu, L. C. Uranium Mining 2002, 21 (1), 33. [徐乐昌. 铀矿冶, 2002, 21 (1), 33.]

    4. [4]

      (4) Parkhurst, D. L. User's Guide to PHREEQC: A Computer Program for Speciation, Reaction-Path, Advective-Transport, and Inverse Geochemical Calculations; U.S. Geological Survey: Lakewood, 1995.

    5. [5]

      (5) Parkhurst, D. L.; Thorstenson, D. C.; Plummer, L. N. PHREEQE-A Computer Program for Geochemical Calculations; U.S. Geological Survey: Lakewood, 1980.

    6. [6]

      (6) Duo, T. H.; Wang, Y. L.; Huang, Z. G.; Cai, X. Q. Uranium Geology 2013, 29 (1), 60. [朵天惠, 王永利, 黄支刚, 蔡兴琪. 铀矿地质, 2013, 29 (1), 60.]

    7. [7]

      (7) Bother, J. V.; Brown, P.W. Cement and Concrete Research 2004, 34, 1057. doi: 10.1016/j.cemconres.2003.11.016

    8. [8]

      (8) Brown, J. G.; Bassett, R. L.; Glynn, P. D. Journal of Hydrology 1998, 209, 225. doi: 10.1016/S0022-1694(98)00091-2

    9. [9]

      (9) Dittrich, T. M.; Reimus, P.W. Journal of Contaminant Hydrology 2015, 175, 44.

    10. [10]

      (10) Halim, C. E.; Short, S. A.; Scott, J. A.; Amal, R.; Low, G. Journal of Hazardous Materials 2005, 125, 45.

    11. [11]

      (11) Joseph, C.; Stockmann, M.; Schmeide, K.; Sachs, S.; Brendler, V.; Bernhard, G. Applied Geochemistry 2013, 36, 104. doi: 10.1016/j.apgeochem.2013.06.016

    12. [12]

      (12) Marsac, R.; Banik, N. l.; Lützenkirchen, J.; Marquardt, C. M.; Dardenne, K.; Schild, D.; Rothe, J.; Diascorn, A.; Kupcik, T.; Schäfer, T.; Geckeis, H. Geochimica et Cosmochimica Acta 2015, 152, 39.

    13. [13]

      (13) Marsac, R.; Banik, N. L.; Marquardt, C. M.; Kratz, J. V. Geochimica et Cosmochimica Acta 2014, 131, 290. doi: 10.1016/j.gca.2014.01.039

    14. [14]

      (14) Marsac, R.; Davranche, M.; Gruau, G.; Coz, M. B.; Dia, A. Geochimica et Cosmochimica Acta 2011, 75, 5625. doi: 10.1016/j.gca.2011.07.009

    15. [15]

      (15) Tiruta-Barna, L. Journal of Hazardous Materials 2008, 157, 525. doi: 10.1016/j.jhazmat.2008.01.028

    16. [16]

      (16) Wissmeier, L.; Barry, D. A. Environmental Modelling & Software 2010, 25, 526. doi: 10.1016/j.envsoft.2009.10.001

    17. [17]

      (17) Zhang, H.; Luo, S. Nuclear Science and Techniques 2007, 18, 150. doi: 10.1016/S1001-8042(07)60037-2

    18. [18]

      (18) Li, Z. Q. The Simulation Study of Uranium Migration in the Groundwater of a NuclearWaste Disposal Site. Master Dissertation, Chengdu University of Technology, Chengdu, 2009. [李志强. 某核废物处置场地下水中铀元素迁移模拟研究[D] 成都: 成都理工大学, 2009.]

    19. [19]

      (19) Huang, Z. G.; Wang, Y. L.; Lu, C. H. Journal of Nuclear and Radiochemistry 2011, 33 (6), 345. [黄支刚, 王永利, 陆春海. 核化学与放射化学, 2011, 33 (6), 345.]

    20. [20]

      (20) Huang, Z. G.; Wang, Y. L.; Lu, C. H.; Duo, T. H.; Chen, P. F. Environmental Chemistry 2012, 31 (2), 168. [黄支刚, 王永利, 陆春海, 朵天惠, 陈鹏飞. 环境化学, 2012, 31 (2), 168.]

    21. [21]

      (21) Zhao, S. N. Enviromental Geochemistry of Heavy Metal and Modelling Analysis of Their Speciation forWuliangsuhai Lake in Inner Mongolia. Ph. D. Dissertation, Inner Mongolia Agricultural University, Hohhot, 2013. [赵胜男. 乌梁素海重金属环境地球化学特征及其存在形态数值模拟分析[D]. 呼和浩特: 内蒙古农业大学, 2013.]

    22. [22]

      (22) Guan, H. Z.; Zhou, T.; Long, H. Q. Journal of Nuclear and Radiochemistry 2011, 12 (2), 84. [贯鸿志, 周舵, 龙浩骑. 核化学与放射化学, 2011, 12 (2), 84.]

    23. [23]

      (23) Guillaumont, R.; Mompean, F. J. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technetium; OECD Nuclear Energy Agency: Issy-les-Moulineaux, 2003.

    24. [24]

      (24) Huang, Z. G. The Characteristics ofWater's Geochemistry in a Certain Country. Master Dissertation, Chengdu University of Technology, Chengdu, 2012. [黄支刚. 四川安县某地水体地球化学特征研究[D]. 成都: 成都理工大学, 2012.]

    25. [25]

      (25) Shi, W. J.; Tan, H. Z. Geoscience 1999, 13 (1), 111. [史维浚, 谭鸿赞. 现代地质, 1999, 13 (1), 111.]

  • 加载中
    1. [1]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    6. [6]

      Juan Yang . Construction of General Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 8-13. doi: 10.12461/PKU.DXHX202408026

    7. [7]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    8. [8]

      Yutao Lu Jing Wu . Rebirth from the Flames: Unveiling the “Chemical Secrets” of Fire Smoke. University Chemistry, 2024, 39(9): 208-213. doi: 10.12461/PKU.DXHX202401001

    9. [9]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    10. [10]

      Dongcheng Liu Xiaokun Li Huancheng Hu Cunji Gao Qiong Hu Shuting Li Yuning Liang . Chemistry Experimental Teaching Reform for the Promotion of Training Exceptional Chemistry Teachers for Normal Schools. University Chemistry, 2024, 39(8): 1-6. doi: 10.3866/PKU.DXHX202311072

    11. [11]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    12. [12]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

    13. [13]

      Qin Kuang Lansun Zheng Yaxian Zhu . Overall Design of the Inorganic Chemistry Course for the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 14-21. doi: 10.12461/PKU.DXHX202408071

    14. [14]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    15. [15]

      Shouyun Yu Wenwei Zhang Shunliu Deng Weihong Li Yanping Ren Yijun Li Yuan Chun Houjin Li Li Ma Faqiong Zhao Xiuqiong Zeng Shuyong Zhang Changgong Meng Jianrong Zhang . Reflection and Practice on the Construction of Fundamental Chemistry Experiments under the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 52-57. doi: 10.12461/PKU.DXHX202408009

    16. [16]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

    17. [17]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    18. [18]

      Wen Shi Zhangwen Wei Mei Pan Chengyong Su . Explorations on the Course Construction of Structural Chemistry Practice and Application Targeting the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 96-100. doi: 10.12461/PKU.DXHX202409036

    19. [19]

      Laiying Zhang Weitai Wu Yiru Wang Shunliu Deng Zhaobin Chen Jiajia Chen Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032

    20. [20]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

Metrics
  • PDF Downloads(257)
  • Abstract views(872)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return