Citation: AO Bing-Yun, YE Xiao-Qiu, CHEN Pi-Heng. Progress in Theoretical Research on Plutonium-Based Solid-State Materials[J]. Acta Physico-Chimica Sinica, ;2015, 31(S1): 3-13. doi: 10.3866/PKU.WHXB2014Ac01 shu

Progress in Theoretical Research on Plutonium-Based Solid-State Materials

  • Corresponding author: AO Bing-Yun, 
  • Fund Project: 国家自然科学基金(21371160, 11305147, 21401173, 11404299) (21371160, 11305147, 21401173, 11404299) 国家高技术研究发展计划项目(863) (SQ2015AA0100069) (863) (SQ2015AA0100069)中国工程物理研究院院长基金(2014-1-58)资助项目 (2014-1-58)

  • As the most complex element, plutonium and its compounds have long been intensively studied and a large number of remarkable scientific breakthroughs have been reported frequently in the literature. However, modern-day problems concerning plutonium involve predicting its properties under long-term aging in storage environments. Because of its high chemical activity and strong α radioactive decay, plutonium is vulnerable to chemical and physical aging, which can produce macroscopic effects such as surface corrosion, swelling, and degradation of its mechanical properties. Unfortunately, plutonium is one of the most unusual metals and even the most extensively studied plutonium phase diagram, electronic structure and surface structure have been controversial to date. Therefore, developing a predictive aging model for plutonium is a major goal for many laboratories internationally. Such predictions require multi-scale modeling, which until now has not existed. In this paper, progress in theoretical investigations on plutonium, especially first-principles calculations of its electronic structure and atomic-scale simulation of self-radiation damage, is briefly reviewed. Moreover, the feasibility of various density functional theory (DFT) calculations and atomic-scale simulation methods used in plutonium-based solid-state materials studies is discussed. Finally, future directions in this research field are presented.
  • 加载中
    1. [1]

      (1) Wang, D. Q.; Su, J.; Wu, J. Y.; Li, J.; Chai, Z. F. Radiochim. Acta 2014, 102, 13.

    2. [2]

      (2) Wang, D. Q.; van Gunsteren, W. F. Prog. Chem. 2011, 23, 1566. [王东琪, van Gunsteren, W. F. 化学进展, 2011, 23, 1566.]

    3. [3]

      (3) Liu, W. J. Prog. Chem. 2007, 19, 833. [刘文剑. 化学进展, 2007, 19, 833.]

    4. [4]

      (4) Chen, P. H.; Lai, X. C.; Wang, X. L. Prog. Chem. 2011, 23, 2316. [陈丕恒, 赖新春, 汪小琳. 化学进展, 2011, 23, 2316.]

    5. [5]

      (5) Moore, K. T.; Laan, G. V. Rev. Mod. Phys. 2009, 81, 235. doi: 10.1103/RevModPhys.81.235

    6. [6]

      (6) Proceeding of the International Conferences "Plutonium Future- The Science", American Institute of Physics, 1997, 2000, 2003, 2006, 2008, 2010, 2012, 2014.

    7. [7]

      (7) Cooper, N. G. Challenges in Plutonium Science; Los Alamos National Laboratory: Los Alamos, New Mexico, USA, 2000.

    8. [8]

      (8) Albers, R. C. Nature 2001, 410, 759. doi: 10.1038/35071205

    9. [9]

      (9) Söderlind, P.; Kotliar, G.; Haule, K. MRS Bull. 2010, 35, 883. doi: 10.1557/mrs2010.715

    10. [10]

      (10) Zinkle, S. J.; Was, G. S. Acta Mater. 2013, 61, 735. doi: 10.1016/j.actamat.2012.11.004

    11. [11]

      (11) Wen, X. D.; Martin, R. L.; Henderson, T. M.; Scuseria, G. E. Chem. Rev. 2013, 113, 1063.

    12. [12]

      (12) Zhang, P.; Wang, B. T.; Zhao, X. G. Phys. Rev. B 2010, 82, 144110. doi: 10.1103/PhysRevB.82.144110

    13. [13]

      (13) Dai, X.; Savrasov, S. Y.; Kotliar, G.; Migliori, A. Science 2003, 300, 953. doi: 10.1126/science.1083428

    14. [14]

      (14) Wong, J.; Krisch, M.; Farber, D. L. Science 2003, 301, 1078. doi: 10.1126/science.1087179

    15. [15]

      (15) Shim, J. H.; Haule, K.; Kotliar, G. Nature 2007, 446, 513. doi: 10.1038/nature05647

    16. [16]

      (16) Zhu, J. X.; Albers, R. C.; Haule, K.; Kotliar, G.; Wills, J. M. Nat. Commun. 2013, 4, 2644.

    17. [17]

      (17) Baskes, M. I. Phys. Rev. B 2000, 62, 15532. doi: 10.1103/PhysRevB.62.15532

    18. [18]

      (18) Valone, S. M.; Baskes, M. I.; Martin, R. L. Phys. Rev. B 2006, 73, 214209. doi: 10.1103/PhysRevB.73.214209

    19. [19]

      (19) Wirth, B. D.; Schwartz, A. J.; Fluss, M. J. MRS Bull. 2001, 26, 679. doi: 10.1557/mrs2001.177

    20. [20]

      (20) Robinson, M.; Kenny, S. D.; Smith, R.; Storr, M. T.; McGee, E. Nucl. Instr. Meth. Phys. Res. B 2009, 267, 2967. doi: 10.1016/j.nimb.2009.06.113

    21. [21]

      (21) Ao, B. Y.; Chen, P. H.; Shi, P.; Wang, X. L.; Hu, W. Y.; Wang, L. Commun. Comput. Phys. 2012, 4, 1205.

    22. [22]

      (22) Dremov, V. V.; Sapozhnikov, F. A.; Samarin, S. I.; Modestov, D. G.; Chizhkova, N. E. J. Alloy. Compd. 2007, 444-445, 197.

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    3. [3]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    8. [8]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    9. [9]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    10. [10]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    11. [11]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    12. [12]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    13. [13]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    14. [14]

      Yupeng TANGHaiying YANGFan JINNan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460

    15. [15]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    16. [16]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    17. [17]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    18. [18]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    19. [19]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    20. [20]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

Metrics
  • PDF Downloads(440)
  • Abstract views(1123)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return