Citation: ZHANG Jie, ZHANG Jiang-Hao, ZHANG Chang-Bin, HE Hong. Complete Catalytic Oxidation of Ethanol over MnO2 with Different Crystal Phase Structures[J]. Acta Physico-Chimica Sinica, ;2015, 31(2): 353-359. doi: 10.3866/PKU.WHXB201412081 shu

Complete Catalytic Oxidation of Ethanol over MnO2 with Different Crystal Phase Structures

  • Received Date: 3 November 2014
    Available Online: 8 December 2014

    Fund Project: 国家自然科学基金(21422706) (21422706)国家高技术研究发展计划项目(863) (2012AA062702)资助 (863) (2012AA062702)

  • α-MnO2, β-MnO2, γ-MnO2, and δ-MnO2 catalysts were synthesized by hydrothermal methods, and their catalytic performances towards the oxidation of ethanol were evaluated in detail. The as-synthesized MnO2 catalysts were characterized by N2 adsorption- desorption measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and H2 temperature-programmed reduction (H2-TPR). The α-MnO2 catalyst showed the best activity of the catalysts tested for the combustion of ethanol and the trend in the activity of different MnO2 catalysts towards the oxidation of ethanol was of the order α-MnO2>δ-MnO2>γ-MnO2>β-MnO2. The effect of the crystal phase structure on the activity of the MnO2 catalysts was investigated. The XRD results showed that there were differences in the crystallinities of the α-, β-, γ-, δ-MnO2 catalysts, but these differences did not have a significant effect on their catalytic performances towards the oxidation of ethanol. The BET surface areas of the α-, β-, γ-, δ-MnO2 catalysts exhibited similar tendencies to their ethanol oxidation activities, although the results of standardization calculations showed that the surface area was not the main factor affecting their catalytical activities. The XPS results showed that the lattice oxygen concentration played an important role in defining the catalytic performance of the MnO2. The α-MnO2 catalyst showed the best reducibility of all of the MnO2 catalysts tested, as determined by H2-TPR. The excellent performance of α-MnO2 was attributed to its higher lattice oxygen concentration and reducibility, which were identified as the main factors affecting the activity of the MnO2 towards the complete oxidation of ethanol.

  • 
    1. [1]

      (1) Amann, M.; Lutz, M. J. Hazard. Mater. 2000, 78, 41. doi: 10.1016/S0304-3894(00)00216-8

    2. [2]

      (2) Grosjean, D.; Grosjean, E.; Gertler, A.W. Environ. Sci. Technol. 2001, 35, 45. doi: 10.1021/es001326a

    3. [3]

      (3) Jacobson, M. Z. Environ. Sci. Technol. 2007, 41, 4150. doi: 10.1021/es062085v

    4. [4]

      (4) Av uropoulos, G.; Oikonomopoulos, E.; Kanistras, D.; Ioannides, T. Appl. Catal. B: Environ. 2006, 65, 62. doi: 10.1016/j.apcatb.2005.12.016

    5. [5]

      (5) Cordi, E. M.; Falconer, J. L. J. Catal. 1996, 162, 104. doi: 10.1006/jcat.1996.0264

    6. [6]

      (6) Mitsui, T.; Tsutsui, K.; Matsui, T.; Kikuchi, R.; Eguchi, K. Appl. Catal. B: Environ. 2008, 81, 56. doi: 10.1016/j.apcatb.2007.12.006

    7. [7]

      (7) Idriss, H.; Seebauer, E. G. J. Mol. Catal. A 2000, 152, 201. doi: 10.1016/S1381-1169(99)00297-6

    8. [8]

      (8) Li, H. J.; Tana; Zhang, X. J.; Huang, X. M.; ShenW. J. Catal. Commun. 2011, 12, 1361. doi: 10.1016/j.catcom.2011.05.016

    9. [9]

      (9) Ye, Q.; Gao, Q.; Zhang, X. R.; Xu, B. Q. Catal. Commun. 2006, 7, 589. doi: 10.1016/j.catcom.2006.01.023

    10. [10]

      (10) Wang, R. H.; Li, J. H. Environ. Sci. Technol. 2010, 44, 4282. doi: 10.1021/es100253c

    11. [11]

      (11) Zhao, P.;Wang, C. N.; He, F.; Liu, S. T. RSC Adv. 2014, 4, 45665. doi: 10.1039/C4RA07843H

    12. [12]

      (12) Liang, S. H.; Teng, F.; Yao,W. Q.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2008, 24, 205. [梁淑惠, 滕飞, 姚文清, 朱永法. 物理化学学报, 2008, 24, 205.] doi: 10.3866/PKU.WHXB20080205

    13. [13]

      (13) Li, J.W.; Zhao, P.; Liu, S. T. Appl. Catal. A: Gen. 2014, 482, 363. doi: 10.1016/j.apcata.2014.06.013

    14. [14]

      (14) Tang, X. F.; Li, Y. G.; Huang, X. M.; Xu, Y. D.; Zhu, H. Q.; Wang, J. G.; Shen,W. J. Appl. Catal. B: Environ. 2006, 62, 265. doi: 10.1016/j.apcatb.2005.08.004

    15. [15]

      (15) Morales, M. R.; Barbero, B. P.; Cadús, L. E. Appl. Catal. B: Environ. 2007, 74, 1. doi: 10.1016/j.apcatb.2007.01.008

    16. [16]

      (16) Njagi, E. C.; Chen, C. H.; Genuino, H.; Galindo, H.; Huang, H.; Suib, S. L. Appl Catal. B: Environ, 2010, 99, 103. doi: 10.1016/j.apcatb.2010.06.006

    17. [17]

      (17) Luo, J.; Zhang, Q. H.; Garcia-Martin z, J.; Suib, S. L. J. Am. Chem. Soc. 2008, 130, 3198. doi: 10.1021/ja077706e

    18. [18]

      (18) Ye, Q.; Zhao, J. S.; Huo, F. F.;Wang, D.; Cheng, S. Y.; Kang, T. F.; Dai, H. X. Microporous Mesoporous Mat. 2013, 172, 20. doi: 10.1016/j.micromeso.2013.01.007

    19. [19]

      (19) Wu, X. Q.; Zong, R. L.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2012, 28, 437. [吴小琴, 宗瑞隆, 朱永法. 物理化学学报, 2012, 28, 437.] doi: 10.3866/PKU.WHXB201112082

    20. [20]

      (20) Sui, N.; Duan, Y. Z.; Jiao, X. L.; Chen, D. R. J. Phys. Chem. C 2009, 113, 8560.

    21. [21]

      (21) Lin, J.; Cai, F.; Zhang, G. Y.; Yang, L. F.; Yang, J. Y.; Fang,W. P. Acta Phys. -Chim. Sin. 2013, 29, 597. [林健, 蔡钒,张国玉, 杨乐夫, 杨金玉, 方维平. 物理化学学报, 2013, 29, 597.] doi: 10.3866/PKU.WHXB201301041

    22. [22]

      (22) Liang, S. H.; Teng, F.; Bulgan, G.; Zong, R. L.; Zhu, Y. F. J. Phys. Chem. C 2008, 112, 5307. doi: 10.1021/jp0774995

    23. [23]

      (23) Xu, R.;Wang, X.;Wang, D. S.; Zhou, K. B.; Li, Y. D. J. Catal. 2006, 237, 426. doi: 10.1016/j.jcat.2005.10.026

    24. [24]

      (24) Dai, Y.; Li, J. H.; Peng, Y.; Tang, X. F. Acta Phys. -Chim. Sin. 2012, 28, 1771. [戴韵, 李俊华, 彭悦, 唐幸福. 物理化学学报, 2012, 28, 1771.] doi: 10.3866/PKU.WHXB201204175

    25. [25]

      (25) Li, J.W.; Song, C.; Liu, S. T. Acta Chim. Sin. 2012, 70, 2347. [李经纬, 宋灿, 刘善堂. 化学学报, 2012, 70, 2347.] doi: 10.6023/A12080562

    26. [26]

      (26) Bastos, S. S. T.; Órfão, J. J. M.; Freitas, M. M. A.; Pereira, M. F. R.; Figueiredo, J. L. Appl. Catal. B: Environ. 2009, 93, 30. doi: 10.1016/j.apcatb.2009.09.009

    27. [27]

      (27) Morales, M. R.; Barbero, B. P.; Cadús, L. E. Appl. Catal. B: Environ. 2006, 67, 229. doi: 10.1016/j.apcatb.2006.05.006

    28. [28]

      (28) Delimaris, D.; Ioannides, T. Appl. Catal. B: Environ. 2008, 84, 303. doi: 10.1016/j.apcatb.2008.04.006

    29. [29]

      (29) Fu, X. B.; Feng, J. Y.;Wang, H.; Ng, K. M. Catal. Commun. 2009, 10, 1844. doi: 10.1016/j.catcom.2009.06.013

    30. [30]

      (30) Hu, J.; Sun, K. Q.; He, D. P.; Xu, B. Q. Chin. J. Catal. 2007, 28, 1025. [胡敬, 孙科强, 何代平, 徐柏庆. 催化学报, 2007, 28, 1025.] doi: 10.1016/S1872-2067(08)60001-7

    31. [31]

      (31) Ye, Q.; Huo, F. F.; Yan, L. N.;Wang, J.; Cheng, S. Y.; Kang, T.F. Acta Phys. -Chim. Sin. 2011, 27, 2872. [叶青, 霍飞飞, 闫立娜, 王娟, 程水源, 康天放. 物理化学学报, 2011, 27, 2872.] doi: 10.3866/PKU.WHXB20112872

    32. [32]

      (32) Dai, Y.;Wang, X. Y.; Li, D.; Dai, Q. G. J. Hazard. Mater. 2011, 188, 132. doi: 10.1016/j.jhazmat.2011.01.084

    33. [33]

      (33) Liu, J.; Makwana, V.; Cai, J.; Suib, S. L.; Aindow, M. J. Phys. Chem. B 2003, 107, 9185. doi: 10.1021/jp0300593


    1. [1]

      (1) Amann, M.; Lutz, M. J. Hazard. Mater. 2000, 78, 41. doi: 10.1016/S0304-3894(00)00216-8

    2. [2]

      (2) Grosjean, D.; Grosjean, E.; Gertler, A.W. Environ. Sci. Technol. 2001, 35, 45. doi: 10.1021/es001326a

    3. [3]

      (3) Jacobson, M. Z. Environ. Sci. Technol. 2007, 41, 4150. doi: 10.1021/es062085v

    4. [4]

      (4) Av uropoulos, G.; Oikonomopoulos, E.; Kanistras, D.; Ioannides, T. Appl. Catal. B: Environ. 2006, 65, 62. doi: 10.1016/j.apcatb.2005.12.016

    5. [5]

      (5) Cordi, E. M.; Falconer, J. L. J. Catal. 1996, 162, 104. doi: 10.1006/jcat.1996.0264

    6. [6]

      (6) Mitsui, T.; Tsutsui, K.; Matsui, T.; Kikuchi, R.; Eguchi, K. Appl. Catal. B: Environ. 2008, 81, 56. doi: 10.1016/j.apcatb.2007.12.006

    7. [7]

      (7) Idriss, H.; Seebauer, E. G. J. Mol. Catal. A 2000, 152, 201. doi: 10.1016/S1381-1169(99)00297-6

    8. [8]

      (8) Li, H. J.; Tana; Zhang, X. J.; Huang, X. M.; ShenW. J. Catal. Commun. 2011, 12, 1361. doi: 10.1016/j.catcom.2011.05.016

    9. [9]

      (9) Ye, Q.; Gao, Q.; Zhang, X. R.; Xu, B. Q. Catal. Commun. 2006, 7, 589. doi: 10.1016/j.catcom.2006.01.023

    10. [10]

      (10) Wang, R. H.; Li, J. H. Environ. Sci. Technol. 2010, 44, 4282. doi: 10.1021/es100253c

    11. [11]

      (11) Zhao, P.;Wang, C. N.; He, F.; Liu, S. T. RSC Adv. 2014, 4, 45665. doi: 10.1039/C4RA07843H

    12. [12]

      (12) Liang, S. H.; Teng, F.; Yao,W. Q.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2008, 24, 205. [梁淑惠, 滕飞, 姚文清, 朱永法. 物理化学学报, 2008, 24, 205.] doi: 10.3866/PKU.WHXB20080205

    13. [13]

      (13) Li, J.W.; Zhao, P.; Liu, S. T. Appl. Catal. A: Gen. 2014, 482, 363. doi: 10.1016/j.apcata.2014.06.013

    14. [14]

      (14) Tang, X. F.; Li, Y. G.; Huang, X. M.; Xu, Y. D.; Zhu, H. Q.; Wang, J. G.; Shen,W. J. Appl. Catal. B: Environ. 2006, 62, 265. doi: 10.1016/j.apcatb.2005.08.004

    15. [15]

      (15) Morales, M. R.; Barbero, B. P.; Cadús, L. E. Appl. Catal. B: Environ. 2007, 74, 1. doi: 10.1016/j.apcatb.2007.01.008

    16. [16]

      (16) Njagi, E. C.; Chen, C. H.; Genuino, H.; Galindo, H.; Huang, H.; Suib, S. L. Appl Catal. B: Environ, 2010, 99, 103. doi: 10.1016/j.apcatb.2010.06.006

    17. [17]

      (17) Luo, J.; Zhang, Q. H.; Garcia-Martin z, J.; Suib, S. L. J. Am. Chem. Soc. 2008, 130, 3198. doi: 10.1021/ja077706e

    18. [18]

      (18) Ye, Q.; Zhao, J. S.; Huo, F. F.;Wang, D.; Cheng, S. Y.; Kang, T. F.; Dai, H. X. Microporous Mesoporous Mat. 2013, 172, 20. doi: 10.1016/j.micromeso.2013.01.007

    19. [19]

      (19) Wu, X. Q.; Zong, R. L.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2012, 28, 437. [吴小琴, 宗瑞隆, 朱永法. 物理化学学报, 2012, 28, 437.] doi: 10.3866/PKU.WHXB201112082

    20. [20]

      (20) Sui, N.; Duan, Y. Z.; Jiao, X. L.; Chen, D. R. J. Phys. Chem. C 2009, 113, 8560.

    21. [21]

      (21) Lin, J.; Cai, F.; Zhang, G. Y.; Yang, L. F.; Yang, J. Y.; Fang,W. P. Acta Phys. -Chim. Sin. 2013, 29, 597. [林健, 蔡钒,张国玉, 杨乐夫, 杨金玉, 方维平. 物理化学学报, 2013, 29, 597.] doi: 10.3866/PKU.WHXB201301041

    22. [22]

      (22) Liang, S. H.; Teng, F.; Bulgan, G.; Zong, R. L.; Zhu, Y. F. J. Phys. Chem. C 2008, 112, 5307. doi: 10.1021/jp0774995

    23. [23]

      (23) Xu, R.;Wang, X.;Wang, D. S.; Zhou, K. B.; Li, Y. D. J. Catal. 2006, 237, 426. doi: 10.1016/j.jcat.2005.10.026

    24. [24]

      (24) Dai, Y.; Li, J. H.; Peng, Y.; Tang, X. F. Acta Phys. -Chim. Sin. 2012, 28, 1771. [戴韵, 李俊华, 彭悦, 唐幸福. 物理化学学报, 2012, 28, 1771.] doi: 10.3866/PKU.WHXB201204175

    25. [25]

      (25) Li, J.W.; Song, C.; Liu, S. T. Acta Chim. Sin. 2012, 70, 2347. [李经纬, 宋灿, 刘善堂. 化学学报, 2012, 70, 2347.] doi: 10.6023/A12080562

    26. [26]

      (26) Bastos, S. S. T.; Órfão, J. J. M.; Freitas, M. M. A.; Pereira, M. F. R.; Figueiredo, J. L. Appl. Catal. B: Environ. 2009, 93, 30. doi: 10.1016/j.apcatb.2009.09.009

    27. [27]

      (27) Morales, M. R.; Barbero, B. P.; Cadús, L. E. Appl. Catal. B: Environ. 2006, 67, 229. doi: 10.1016/j.apcatb.2006.05.006

    28. [28]

      (28) Delimaris, D.; Ioannides, T. Appl. Catal. B: Environ. 2008, 84, 303. doi: 10.1016/j.apcatb.2008.04.006

    29. [29]

      (29) Fu, X. B.; Feng, J. Y.;Wang, H.; Ng, K. M. Catal. Commun. 2009, 10, 1844. doi: 10.1016/j.catcom.2009.06.013

    30. [30]

      (30) Hu, J.; Sun, K. Q.; He, D. P.; Xu, B. Q. Chin. J. Catal. 2007, 28, 1025. [胡敬, 孙科强, 何代平, 徐柏庆. 催化学报, 2007, 28, 1025.] doi: 10.1016/S1872-2067(08)60001-7

    31. [31]

      (31) Ye, Q.; Huo, F. F.; Yan, L. N.;Wang, J.; Cheng, S. Y.; Kang, T.F. Acta Phys. -Chim. Sin. 2011, 27, 2872. [叶青, 霍飞飞, 闫立娜, 王娟, 程水源, 康天放. 物理化学学报, 2011, 27, 2872.] doi: 10.3866/PKU.WHXB20112872

    32. [32]

      (32) Dai, Y.;Wang, X. Y.; Li, D.; Dai, Q. G. J. Hazard. Mater. 2011, 188, 132. doi: 10.1016/j.jhazmat.2011.01.084

    33. [33]

      (33) Liu, J.; Makwana, V.; Cai, J.; Suib, S. L.; Aindow, M. J. Phys. Chem. B 2003, 107, 9185. doi: 10.1021/jp0300593


  • 加载中
    1. [1]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    2. [2]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(428)
  • Abstract views(778)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return