Citation: QIAN Yang, XU Jiang. Properties of Zr Nanocrystalline Coating on Ti Alloy Bipolar Plates in Simulated PEMFC Environments[J]. Acta Physico-Chimica Sinica, ;2015, 31(2): 291-301. doi: 10.3866/PKU.WHXB201411262 shu

Properties of Zr Nanocrystalline Coating on Ti Alloy Bipolar Plates in Simulated PEMFC Environments

  • Received Date: 9 September 2014
    Available Online: 26 November 2014

    Fund Project: 国家自然科学基金(51374130) (51374130)航空科学基金(2013ZE52058)资助项目 (2013ZE52058)

  • A zirconium nanocrystalline coating has been fabricated on a Ti-6A1-4V alloy bipolar plates using a double cathode glow discharge technique to improve the corrosion resistance and reduce the interfacial contact resistance in polymer electrolyte membrane fuel cells (PEMFCs). The microstructure of Zr coating was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The microstructure of the Zr coating was found to be continuous and compact; consisting of deposited and diffusion layers. The deposited layer was 30 μm thick and composed of equiaxed grains with an average grain size of around 15 nm, whereas the diffusion layer was 10 μm thick with a gradient distribution of alloying elements, which offered a smooth transition of mechanical properties that were suitable for improving the adhesion strength of the Zr coating on the Ti-6A1-4V substrate. The electrochemical behavior of the Zr coating was evaluated in 0.5 mol·L-1 H2SO4 solution containing 2 mg·L-1 of HF solution at 70 ℃ to simulate the environment found in a PEMFC. The solution was purged with H2 (simulated PEMFC anodic environment) or air (simulated PEMFC cathodic environment). The Ecorr of the deposited Zr nanocrystalline coating was much higher than that of the Ti-6A1-4V alloy in the simulated PEMFC environment. At the applied cathode (+0.6 V) potentials for PEMFCs, both the Zr nanocrystalline coating and Ti-6A1-4V alloy were in the passive region, but the passive current density of the as-deposited Zr nanocrystalline coating was four orders of magnitude lower than that of the Ti-6A1-4V alloy. At the applied anode (-0.1 V), the Zr nanocrystalline coating exhibited characteristic cathodic protection behavior. The results of electrochemical impedance spectroscopy (EIS) showed that the values of the capacitance semicircle, phase angle maximum and frequency range were larger than those of the Ti-6A1-4V alloy in the simulated PEMFC environment when the phase angle was near -80°. Moreover, the Zr nanocrystalline coating effectively improved the conductivity and hydrophobicity of the Ti-6A1- 4V alloy bipolar plate.

  • 加载中
    1. [1]

      (1) Karimi, S.; Fraser, N.; Roberts, B.; Foulkes, F. R. Adv. Mater. Sci. Eng. 2012, 2012, 22.

    2. [2]

      (2) Feng, K.; Li, Z.; Sun, H.; Yu, L.; Cai, X.;Wu, Y.; Chu, P. K. J. Power Sources 2013, 222, 351. doi: 10.1016/j.jpowsour.2012.08.087

    3. [3]

      (3) Liang, P.; Xu, H. F.; Liu, M.; Lu, L.; Fu, J. Acta Phys. -Chim. Sin. 2010, 26, 595. [梁鹏, 徐洪峰, 刘明, 卢璐, 傅杰. 物理化学学报, 2010, 26, 595.] doi: 10.3866/PKU.WHXB20100329

    4. [4]

      (4) Wang, Y.; Northwood, D. O. J. Power Sources 2007, 165, 293. doi: 10.1016/j.jpowsour.2006.12.034

    5. [5]

      (5) Lai, D.; Xu, J.; Xie, Z. H.; Munroe, P. R. J. Mater. Res. 2011, 26, 3020. doi: 10.1557/jmr.2011.367

    6. [6]

      (6) Xu, J.; Liu, L.; Lu, X. J. Alloy. Compd. 2011, 509, 2450. doi: 10.1016/j.jallcom.2010.11.051

    7. [7]

      (7) Xu, J.; Xie, Z. H.; Munroe, P. Intermetallics 2011, 19, 1146. doi: 10.1016/j.intermet.2011.03.019

    8. [8]

      (8) Liu, L.; Xu, J.; Xie, Z. H.; Munroe, P. J. Mater. Chem. A 2013, 1, 2064. doi: 10.1039/c2ta00510g

    9. [9]

      (9) Wang, H.; Sweikart, M. A.; Turner, J. A. J. Power Sources 2003, 115, 243. doi: 10.1016/S0378-7753(03)00023-5

    10. [10]

      (10) Ito, K.; Hayashi, T.; Yokobayashi, M.; Numakura, H. Intermetallics 2004, 12, 407. doi: 10.1016/j.intermet.2003.12.009

    11. [11]

      (11) Ceschini, L.; Lanzoni, E.; Martini, C.; Prandstraller, D.; Sambogna, G. Wear 2008, 264, 86. doi: 10.1016/j.wear.2007.01.045

    12. [12]

      (12) Rauschenbach, B.; Gerlach, J.W. Cryst. Res. Technol. 2000, 35, 675.

    13. [13]

      (13) Du, N.; Shu,W. F.; Zhao, Q.; Chen, Q. L.;Wang, S. X. The Chinese Journal of Nonferrous Metals 2013, 23, 426. [杜楠, 舒伟发, 赵晴, 陈庆龙, 王帅星. 中国有色金属学报, 2013, 23, 426.] doi: 10.1016/S1003-6326(13)62480-2

    14. [14]

      (14) Tawfik, H.; Hung, Y.; Mahajan, D. J. Power Sources 2007, 163, 755. doi: 10.1016/j.jpowsour.2006.09.088

    15. [15]

      (15) Wang, Y.; Northwood, D. O. Electrochim. Acta 2007, 52, 6793. doi: 10.1016/j.electacta.2007.05.001

    16. [16]

      (16) Wang, L.; Sun, J.; Sun, J.; Lv, Y.; Li, S.; Ji, S.;Wen, Z. J. Power Sources 2012, 199, 195. doi: 10.1016/j.jpowsour.2011.10.034

    17. [17]

      (17) Wang, J. L.; Sun, J. C.; Tian, R. J.; Xu, J. Chinese Journal of Power Sources 2007, 31, 725. [王剑莉, 孙俊才, 田如锦, 徐靖. 电源技术, 2007, 31, 725.]

    18. [18]

      (18) Fekry, A. M. Electrochim. Acta 2009, 54, 3480. doi: 10.1016/j.electacta.2008.12.060

    19. [19]

      (19) Macdonald, D. D.; Biaggio, S. R.; Song, H. J. Electrochem. Soc. 1992, 139, 170. doi: 10.1149/1.2069165

    20. [20]

      (20) Macdonald, D. D. J. Electrochem. Soc. 1992, 139, 3434. doi: 10.1149/1.2069096

    21. [21]

      (21) Meng, G.; Li, Y.;Wang, F. Electrochim. Acta 2006, 51, 4277. doi: 10.1016/j.electacta.2005.12.015

    22. [22]

      (22) Yuan, L.;Wang, H. M. Electrochim. Acta 2008, 54, 421. doi: 10.1016/j.electacta.2008.07.056

    23. [23]

      (23) Bonnel, K.; Le Pen, C.; Pebere, N. Electrochim. Acta 1999, 44, 4259. doi: 10.1016/S0013-4686(99)00141-3

    24. [24]

      (24) Assis, S. L. D.;Wolynec, S.; Costa, I. Electrochim. Acta 2006, 51, 1815. doi: 10.1016/j.electacta.2005.02.121

    25. [25]

      (25) Fekry, A. M.; El-Sherif, R. M. Electrochim. Acta 2009, 54, 7280. doi: 10.1016/j.electacta.2009.07.047

    26. [26]

      (26) Li, J. F.; Zhang, Z.; Cao, F. H.; Cheng, Y. L.; Zhang, J. Q.; Cao, C. N. Acta Metall. Sin. 2003, 39, 426. [李劲风, 张昭,曹发和, 程英亮, 张鉴清, 曹楚南. 金属学报, 2003, 39, 426.]

    27. [27]

      (27) Cheng, X.; Li, X.; Yang, L.; Du, C. Journal of Wuhan University of Technology-Materials Science Edition 2008, 23, 574. doi: 10.1007/s11595-006-4574-0

    28. [28]

      (28) Potucek, R. K.; Rateick, R. G.; Birss, V. I. J. Electrochem. Soc. 2006, 153, B304.

    29. [29]

      (29) Brug, G. J.; Van Den Eeden, A. L. G.; Sluyters-Rehbach, M.; Sluyters, J. H. J. Electroanal. Chem. 1984, 176, 275. doi: 10.1016/S0022-0728(84)80324-1

    30. [30]

      (30) Igual Muñoz, A.; García Antón, J.; Guiñón, J. L.; Pérez Herranz, V. Corrosion Sci. 2007, 49, 3200. doi: 10.1016/j.corsci.2007.03.002

    31. [31]

      (31) Arutunow, A.; Darowicki, K. Electrochim. Acta 2008, 53, 4387. doi: 10.1016/j.electacta.2008.01.063

    32. [32]

      (32) Kaufmann, R.; Klewe, N. H.; Moers, H.; Pfennig, G.; Jenett, H.; Ache, H. J. Surf. Interface Anal. 1988, 11, 502.

    33. [33]

      (33) Balaceanu, M.; Braic, M.; Braic, V.; Vladescu, A.; Negrila, C. C. J. Optoelectron. Adv. Mater. 2005, 7, 2557.

    34. [34]

      (34) Wagner, C. D.; Zatko, D. A.; Raymond, R. H. Anal. Chem. 1980, 52, 1445. doi: 10.1021/ac50059a017

    35. [35]

      (35) Lindberg, B. J.; Hamrin, K.; Johansson, G.; Gelius, U.; Fahlman, A.; Nordling, C.; Siegbahn, K. Phys. Scr. 1970, 1, 286. doi: 10.1088/0031-8949/1/5-6/020

    36. [36]

      (36) Monticelli, C.; Bellosi, A.; Dal Colle, M. J. Electrochem. Soc. 2004, 151, B331.

    37. [37]

      (37) Weber, A. Z.; Newman, J. J. Electrochem. Soc. 2006, 153, A2205.

    38. [38]

      (38) Fu, Y.; Lin, G.; Hou, M.;Wu, B.; Shao, Z.; Yi, B. Int. J. Hydrog. Energy 2009, 34, 405. doi: 10.1016/j.ijhydene.2008.10.068

    39. [39]

      (39) Kim, J. S.; Peelen,W. H. A.; Hemmes, K.; Makkus, R. C. Corrosion Sci. 2002, 44, 635. doi: 10.1016/S0010-938X(01)00107-X


  • 加载中
    1. [1]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    2. [2]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    5. [5]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    6. [6]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    13. [13]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    14. [14]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    15. [15]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    16. [16]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    17. [17]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

Metrics
  • PDF Downloads(437)
  • Abstract views(523)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return