Citation: GAO Xiao-Dan, LI Hang, TIAN Rui, LIU Xin-Min, ZHU Hua-Ling. Quantitative Characterization of Specific Ion Effects Using an Effective Charge Number Based on the uy-Chapman Model[J]. Acta Physico-Chimica Sinica, ;2014, 30(12): 2272-2282. doi: 10.3866/PKU.WHXB201410231 shu

Quantitative Characterization of Specific Ion Effects Using an Effective Charge Number Based on the uy-Chapman Model

  • Received Date: 22 July 2014
    Available Online: 23 October 2014

    Fund Project: 国家自然科学基金(41371249, 41101223) (41371249, 41101223)西南大学研究生科技创新基金(ky2011009)资助项目 (ky2011009)

  • Specific ion effects have been observed in a wide range of phenomena at solid-liquid interfaces. Recent studies have indicated that the origin of these effects in some relatively low-electrolyte-concentration systems is the ion polarization in the strong electric field near the interface, rather than dispersion forces, classical induction forces, ionic size, or hydration effects. These effects cause the counterions near the interface to become strongly polarized (with a polarization that is nearly ten thousands times stronger than classical polarization). This strong polarization causes that the Coulomb force exerted by the polarized ions near the interface is far greater than the force generated by the ionic charge, which is reflected in the fact that the effective charge number of polarized ions is much larger than their original charge number. We therefore used the effective charge number of strongly polarized cations to quantitatively characterize the strength of specific ion effects in colloid systems. In this study, we observed the strong, specific ion effects of Na+, K+, Ca2+, and Cu2+ in the montmorillonite-humic acid composite aggregation process. Furthermore, we established a method to calculate the effective charge number of polarized cations based on the critical coagulation concentration (CCC) measured using dynamic light scattering. We successfully obtained the effective charge number of polarized ions. The experimental effective charge numbers for Na+, K+, Ca2+, and Cu2+ were ZNa(effective)=1.46, ZK(effective)=1.86, ZCa(effective)=3.92, ZCu(effective)=6.48, respectively. These results showed that the non-classical polarization greatly enhanced the effective charge number of ions, greatly enhancing the Coulomb force exerted by the ions; and that the more electronic layers the ions had and the stronger the ionic polarization, the more the effective charge of ions increased.

  • 加载中
    1. [1]

      (1) Lo Nostro, P.; Ninham, B.W. Chem. Rev. 2012, 112, 2286. doi: 10.1021/cr200271j

    2. [2]

      (2) Hofmeister, F. Archiv für Experimentelle Pathologie und Pharmakologie 1888, 25, 1.

    3. [3]

      (3) Izutsu, K. I.; Aoyagi, N. Int. J. Pharm. 2005, 288, 101. doi: 10.1016/j.ijpharm.2004.09.015

    4. [4]

      (4) Parsons, D. F.; Boström, M.; Nostro, P. L.; Ninham, B.W. Phys. Chem. Chem. Phys. 2011, 13, 12352. doi: 10.1039/c1cp20538b

    5. [5]

      (5) Kunz,W.; Lo Nostro, P.; Ninham, B.W. Curr. Opin. Colloid Interface Sci. 2004, 9, 1. doi: 10.1016/j.cocis.2004.05.004

    6. [6]

      (6) Ninham, B.W. Lipid. Polym. -Lipid. Syst. 2002, 120, 1. doi: 10.1007/3-540-45291-5

    7. [7]

      (7) Tobias, D. J.; Hemminger, J. C. Science 2008, 319, 1197. doi: 10.1126/science.1152799

    8. [8]

      (8) Yu, Y. X.; Fujimoto, S. Sci. China Chem. 2013, 56, 1735. doi: 10.1007/s11426-013-4959-9

    9. [9]

      (9) Tielrooij, K.; Garcia-Araez, N.; Bonn, M.; Bakker, H. Science 2010, 328, 1006. doi: 10.1126/science.1183512

    10. [10]

      (10) Nucci, N. V.; Vanderkooi, J. M. J. Mol. Liq. 2008, 143, 160. doi: 10.1016/j.molliq.2008.07.010

    11. [11]

      (11) Yu, Y. X.; Gao, G. H.; Li, Y. G. Fluid Phase Equilib. 2000, 173, 23.

    12. [12]

      (12) Lu, J. F.; Yu, Y. X.; Li, Y. G. Fluid Phase Equilib. 1993, 85, 81. doi: 10.1016/0378-3812(93)80006-9

    13. [13]

      (13) Peula-García, J. M.; Ortega-Vinuesa, J. L.; Bastos- nzález, D. J. Phys. Chem. C 2010, 114, 11133.

    14. [14]

      (14) Boström, M.;Williams, D. R. M.; Ninham, B.W. Phys. Rev. Lett. 2001, 87, 168103. doi: 10.1103/PhysRevLett.87.168103

    15. [15]

      (15) Ninham, B.W.; Duignan, T. T.; Parsons, D. F. Curr. Opin. Colloid Interface Sci. 2011, 16, 612. doi: 10.1016/j. cocis.2011.04.006

    16. [16]

      (16) Hu, J. H.; Yang, Z. X.; Zheng, Z. Colloid and Interface Chemistry; South China University of Technology Press: Guangzhou, 1997; pp 254-330. [胡纪华, 杨兆禧, 郑忠. 胶体与界面化学. 广州: 华南理工大学出版社, 1997: 254-330.]

    17. [17]

      (17) Jin, L.; Yu, Y. X.; Gao, G. H. J. Colloid Interface Sci. 2006, 304, 77. doi: 10.1016/j.jcis.2006.08.046

    18. [18]

      (18) Liu, X. M.; Li, H.; Du,W.; Tian, R.; Li, R.; Jiang, X. J. J. Phys. Chem. C 2013, 117, 6245. doi: 10.1021/jp312682u

    19. [19]

      (19) Liu, X. M.; Li, H.; Li, R.; Xie, D. T.; Ni, J. P.;Wu, L. S. Sci. Rep. 2014, 4, 5047.

    20. [20]

      (20) Tian, R.; Yang, G.; Li, H.; Gao, X. D.; Liu, X. M.; Zhu, H. L.; Tang, Y. Phys. Chem. Chem. Phys. 2014, 16, 8828. doi: 10.1039/c3cp54813a

    21. [21]

      (21) Borukhov, I.; Andelman, D.; Orland, H. Phys. Rev. Lett. 1997, 79, 435. doi: 10.1103/PhysRevLett.79.435

    22. [22]

      (22) Kim, H. K.; Tuite, E.; Nordén, B.; Ninham, B.W. Eur. Phys. J. E 2001, 4, 411. doi: 10.1007/s101890170096

    23. [23]

      (23) Kanda, Y.; Yamamoto, T.; Higashitani, K. Adv. Powder Technol. 2002, 13, 149. doi: 10.1163/156855202760166505

    24. [24]

      (24) Sheng, N.; Boyce, M. C.; Parks, D. M.; Rutledge, G. C.; Abes, J. I.; Cohen, R. E. Polymer 2004, 45, 487. doi: 10.1016/j.polymer.2003.10.100

    25. [25]

      (25) Zhu, H. L.; Li, B.; Xiong, H. L.; Li, H.; Jia, M. Y. Acta Phys. -Chim. Sin. 2009, 25, 1225. [朱华玲, 李兵, 熊海灵, 李航, 贾明云. 物理化学学报, 2009, 25, 1225.] doi: 10.3866/PKU.WHXB20090631

    26. [26]

      (26) Li, S.; Li, H.; Xu, C. Y.; Huang, X. R.; Xie, D. T.; Ni, J. P. Soil Sci. Soc. Am. J. 2013, 77, 1563. doi: 10.2136/sssaj2013.01.0009

    27. [27]

      (27) Xiong, Y. Soil Colloid, 2nd ed.; Science Press: Beijing, 1985; pp 10-14. [熊毅. 土壤胶体(第二册). 北京: 科学出版社, 1985: 10-14.]

    28. [28]

      (28) Low, P. F. Soil Sci. Soc. Am. J. 1980, 44, 667. doi: 10.2136/sssaj1980.03615995004400040001x

    29. [29]

      (29) Liu, X. M.; Li, H.; Li, R.; Tian, R.; Xu, C. Y. Analyst 2013, 138, 1122.

    30. [30]

      (30) Kuwatsuka, S.;Watanabe, A.; Itoh, K.; Arai, S. Soil Sci. Plant Nutr. 1992, 38, 23. doi: 10.1080/00380768.1992.10416948

    31. [31]

      (31) Wu, G. F.; Ren, Q.; Tao, Y.; Zhang, H. X. Chin. J. Colloid Polym. 2007, 2, 40. [吴广峰, 任群, 陶悦, 张会轩. 胶体与聚合物, 2007, 2, 40.]

    32. [32]

      (32) Jia, M. Y.; Li, H.; Zhu, H. L.; Tian, R.; Gao, X. D. J. Soils Sediments 2013, 13, 325. doi: 10.1007/s11368-012-0608-8

    33. [33]

      (33) Gao, X. D.; Li, H.; Zhu, H. L.; Tian, R. Acta Pedol. Sin. 2012, 49, 698. [高晓丹, 李航, 朱华玲, 田锐. 土壤学报, 2012, 49, 698.]

    34. [34]

      (34) Noah-Vanhoucke, J.; Geissler, P. L. Proc. Natl. Acad. Sci. 2009, 106, 15125. doi: 10.1073/pnas.0905168106

    35. [35]

      (35) Boroudjerdi, H.; Kim, Y.W.; Naji, A.; Netz, R. R.; Schlagberger, X.; Serr, A. Phys. Rep. 2005, 416, 129. doi: 10.1016/j.physrep.2005.06.006

    36. [36]

      (36) Manning, G. S. J. Phys. Chem. 1981, 85, 1506. doi: 10.1021/j150611a011

    37. [37]

      (37) Stellwagen, E.; Stellwagen, N. C. Biophys. J. 2003, 84, 1855. doi: 10.1016/S0006-3495(03)74993-5

    38. [38]

      (38) Logan, E. M.; Pulford, I. D.; Cook, G. T.; Mackenzie, A. B. Eur. J. Soil Sci. 1997, 48, 685. doi: 10.1046/j.1365-2389.1997.00123.x

    39. [39]

      (39) Ducker,W. A.; Senden, T. J.; Pashley, R. M. Langmuir 1992, 8, 1831. doi: 10.1021/la00043a024

    40. [40]

      (40) Verwey, E. J.W.; Overbeek, J. T. G.; Van Nes, K., Theory of the Stability of Lyophobic Colloids: The Interaction of Sol Particles Having an Electric Double Layer; Elsevier: New York, 1948.

    41. [41]

      (41) Hou, J.; Li, H.; Zhu, H. L.;Wu, L. S. Soil Sci. Soc. Am. J. 2009, 73, 1658. doi: 10.2136/sssaj2008.0017

    42. [42]

      (42) Li, H.; Qing, C. L.;Wei, S. Q.; Jiang, X. J. J. Colloid Interface Sci. 2004, 275, 172. doi: 10.1016/j.jcis.2003.12.055

    43. [43]

      (43) Li, H.; Peng, X. H.;Wu, L. S.; Jia, M. Y.; Zhu, H. L. J. Phys. Chem. C 2009, 113, 4419. doi: 10.1021/jp808372r

    44. [44]

      (44) Amal, R.; Coury, J. R.; Raper, J. A.;Walsh,W. P.;Waite, T. D. Colloids Surf. 1990, 46, 1. doi: 10.1016/0166-6622(90)80045-6

    45. [45]

      (45) Li, T. C.; Kheifets, S.; Medellin, D.; Raizen, M. G. Science 2010, 328, 1673. doi: 10.1126/science.1189403

    46. [46]

      (46) Uhlenbeck, G. E.; Ornstein, L. S. Phy. Rev. 1930, 36, 823. doi: 10.1103/PhysRev.36.823

    47. [47]

      (47) Wang, K.; Yu, Y. X.; Gao, G. H. Phys. Rev. E 2004, 70, 011912. doi: 10.1103/PhysRevE.70.011912

    48. [48]

      (48) Peng, B.; Yu, Y. X. J. Chem.Phys. 2009, 131, 134703. doi: 10.1063/1.3243873


  • 加载中
    1. [1]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    2. [2]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    3. [3]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    4. [4]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    8. [8]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    11. [11]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    12. [12]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    13. [13]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    14. [14]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    15. [15]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    16. [16]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    17. [17]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    20. [20]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

Metrics
  • PDF Downloads(428)
  • Abstract views(464)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return