Citation: DENG Sheng-Wei, HAN Xia, HUANG Yong-Min, XU Shou-Hong, LIU Hong-Lai, LIN Shao-Liang. Sequential Mesoscale Approach for Determining the Effects of the Addition of a Block Copolymer Compatibilizer on the Mechanical Properties of Polymer Blends[J]. Acta Physico-Chimica Sinica, ;2014, 30(12): 2241-2248. doi: 10.3866/PKU.WHXB201410171 shu

Sequential Mesoscale Approach for Determining the Effects of the Addition of a Block Copolymer Compatibilizer on the Mechanical Properties of Polymer Blends

  • Received Date: 3 August 2014
    Available Online: 17 October 2014

    Fund Project: 国家自然科学基金(91334203, 21476071, 51103044) (91334203, 21476071, 51103044)

  • The compatibilizing effects of the addition of a block copolymer on the mechanical properties of immiscible polymer blends were studied using a combined simulation method; this method used MesoDyn to determine the morphology and a probabilistic lattice spring model (LSM) to determine the mechanical properties. The mechanical properties, including the Young's modulus, tensile strength, and fracture position, were analyzed as a function of the concentration of the additive. The simulation results showed that the polymer blends without any compatibilizer had poor mechanical properties, compared with the original components, primarily because of the lack of stress transfer across the sharp interface. The tensile strength increased dramatically with the addition of the compatibilizer. The fracture position moved from the interface further into the matrix with increases in the volume fraction of the compatibilizer, leading to the enhancement of the tensile strength. The Young's modulus varied slightly with increases in the concentration of the additive. These studies provide an efficient path for the correlation of the complex morphologies of polymer blends with their mechanical response.

  • 加载中
    1. [1]

      (1) Zhang, Y. X.; Song, Y. H.; Zheng, Q. Acta Polymerica Sinica 2012, 12, 1364. [张运湘, 宋义虎, 郑强. 高分子学报, 2012, 12, 1364.]

    2. [2]

      (2) Dai, S.; Ye, L.; Hu, G. H. Journal of Applied Polymer Science 2012, 126 (3), 1165. doi: 10.1002/app.v126.3

    3. [3]

      (3) Cao, Y.; Zhang, J.; Feng, J.;Wu, P. ACS Nano 2011, 5 (7), 5920. doi: 10.1021/nn201717a

    4. [4]

      (4) Gao, C.; Zhang, S.; Li, X.; Zhu, S.; Jiang, Z. Polymer 2014, 55 (1), 119. doi: 10.1016/j.polymer.2013.11.022

    5. [5]

      (5) Wu, D.; Zhang, Y.; Yuan, L.; Zhang, M.; Zhou,W. Journal of Polymer Science Part B: Polymer Physics 2010, 48 (7), 756. doi: 10.1002/polb.v48:7

    6. [6]

      (6) Eastwood, E.; Dadmun, M. Macromolecules 2002, 35 (13), 5069. doi: 10.1021/ma011701z

    7. [7]

      (7) Fredrickson, G. H.; Ganesan, V.; Drolet, F. Macromolecules 2002, 35 (1), 16. doi: 10.1021/ma011515t

    8. [8]

      (8) Chen, X. Q.; Xu, F.; Qiu, F.; Yang, Y. L. Acta Chim. Sin. 2006, 64 (7), 698. [陈学琴, 徐峰, 邱枫, 杨玉良. 化学学报, 2006, 64 (7), 698.]

    9. [9]

      (9) Malik, R.; Hall, C. K.; Genzer, J. Soft Matter 2011, 7 (22), 10620. doi: 10.1039/c1sm06292a

    10. [10]

      (10) Ko, M.; Kim, S.; Jo,W. Polymer 2000, 41 (16), 6387. doi: 10.1016/S0032-3861(99)00855-1

    11. [11]

      (11) Malik, R.; Hall, C. K.; Genzer, J. Macromolecules 2010, 43 (11), 5149. doi: 10.1021/ma100460y

    12. [12]

      (12) Fu, Y. Z.; Hu, S. Q.; Lan, Y. H.; Liu, Y. Q. Acta Chim. Sin. 2010, 68 (8), 809. [付一政, 胡双启, 兰艳花, 刘亚青. 化学学报, 2010, 68 (8), 809.]

    13. [13]

      (13) Pickett, G. T.; Jasnow, D.; Balazs, A. C. Physical Review Letters 1996, 77 (4), 671. doi: 10.1103/PhysRevLett.77.671

    14. [14]

      (14) Makke, A.; Lame, O.; Perez, M.; Barrat, J. L. Macromolecules 2012, 45 (20), 8445. doi: 10.1021/ma301286y

    15. [15]

      (15) Gusev, A. A. Physical Review Letters 2004, 93 (3), 034302. doi: 10.1103/PhysRevLett.93.034302

    16. [16]

      (16) Ostoja-Starzewski, M. Applied Mechanics Reviews 2002, 55 (1), 35. doi: 10.1115/1.1432990

    17. [17]

      (17) Buxton, G. A.; Balazs, A. C. Physical Review B 2004, 69 (5), 054101.

    18. [18]

      (18) Buxton, G. A.; Balazs, A. C. Macromolecules 2005, 38 (2), 488. doi: 10.1021/ma048470r

    19. [19]

      (19) Buxton, G. A.; Balazs, A. C. The Journal of Chemical Physics 2002, 117 (16), 7649. doi: 10.1063/1.1509447

    20. [20]

      (20) Yan, L. T.; Maresov, E.; Buxton, G. A.; Balazs, A. C. Soft Matter 2011, 7 (2), 595. doi: 10.1039/c0sm00803f

    21. [21]

      (21) Buxton, G. A.; Care, C. M.; Cleaver, D. J. Modelling and Simulation in Mmaterials Science and Engineering 2001, 9 (6), 485. doi: 10.1088/0965-0393/9/6/302

    22. [22]

      (22) Van Vlimmeren, B.; Postma, M.; Huetz, P.; Brisson, A.; Fraaije, J. Physical Review E 1996, 54 (5), 5836. doi: 10.1103/PhysRevE.54.5836

    23. [23]

      (23) Fraaije, J.; Van Vlimmeren, B.; Maurits, N.; Postma, M.; Evers, O.; Hoffmann, C.; Altevogt, P.; ldbeck-Wood, G. The Journal of Chemical Physics 1997, 106 (10), 4260. doi: 10.1063/1.473129

    24. [24]

      (24) Morozov, A. N.; Fraaije, J. G. E. M. Physical Review E 2002, 65, 31803.

    25. [25]

      (25) Deng, S.; Zhao, X.; Huang, Y.; Han, X.; Liu, H.; Hu, Y. Polymer 2011, 52 (24), 5681. doi: 10.1016/j.polymer.2011.09.050

    26. [26]

      (26) Piotto, S.; Concilio, S.; Mavelli, F.; Iannelli, P. Macromolecular Symposia 2009, 286 (1), 25.

    27. [27]

      (27) Galloway, J. A.; Jeon, H. K.; Bell, J. R.; Macosko, C.W. Polymer 2005, 46 (1), 183. doi: 10.1016/j.polymer.2004.10.061

    28. [28]

      (28) Ge, T.; Grest, G. S.; Robbins, M. O. ACS Macro Letters 2013, 2 (10), 882. doi: 10.1021/mz400407m

    29. [29]

      (29) Stamm, M. Polymer Surface and Interface Characterization Techniques; Springer: Heidelberg, 2008; pp 286-292.

    30. [30]

      (30) Hossain, D.; Tschopp, M.;Ward, D.; Bouvard, J.;Wang, P.; Horstemeyer, M. Polymer 2010, 51 (25), 6071. doi: 10.1016/j.polymer.2010.10.009

    31. [31]

      (31) Gao, Y. M.; Mao, H.W.; Zeng, L. H.; Liu, K. P. Journal of Wuhan University of Science and Technology 2012, 35 (2), 96. [高延敏, 毛慧文, 曾鲁红, 刘坤鹏. 武汉科技大学学报: 自然科学版, 2012, 35 (2), 96.]


  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    3. [3]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    4. [4]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    5. [5]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    6. [6]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    9. [9]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    12. [12]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    13. [13]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Xiaoyan Wang Chao Wang Dongmei Dai Yanling Geng Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074

    19. [19]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    20. [20]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

Metrics
  • PDF Downloads(409)
  • Abstract views(494)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return