Citation: MEI Qing-Qing, HOU Min-Qiang, NING Hui, MA Jun, YANG De-Zhong, HAN Bu-Xing. Microstructure and Intermolecular Interactions of [Bmim][PF6]+Water+ Alcohol Systems: A Molecular Dynamics Simulation Study[J]. Acta Physico-Chimica Sinica, ;2014, 30(12): 2210-2215. doi: 10.3866/PKU.WHXB201410151 shu

Microstructure and Intermolecular Interactions of [Bmim][PF6]+Water+ Alcohol Systems: A Molecular Dynamics Simulation Study

  • Received Date: 16 August 2014
    Available Online: 15 October 2014

    Fund Project: 国家自然科学基金(21133009, U1232203)资助项目 (21133009, U1232203)

  • Studying the microstructure and intermolecular interactions of ionic liquid (IL) systems is of great importance. In this work, molecular dynamics (MD) simulations were performed on 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6])+water+ethanol and [Bmim][PF6]+water+isopropanol ternary systems. Radial distribution functions were calculated, and the interaction energies between ion pairs and mixed solvents of different compositions were decomposed into Coulombic interaction energies and Lennard-Jones (LJ) potentials. The microstructure and intermolecular interactions of the ternary systems were studied based on the results, and the phase behaviors of the systems were discussed. The results show that water tends to interact with the anion and polar part of the cation, while alcohols prefer to interact with the anion and nonpolar part of the cation. The Coulombic interaction dominates over the anion-solvent interaction, while the LJ interaction dominates over the cation-solvent interaction. The association state of the ion pair has a small effect on the LJ interaction, but a significant effect on the Coulombic interaction.

  • 加载中
    1. [1]

      (1) Huo, F.; Liu, Z.;Wang,W. J. Phys. Chem. B 2013, 117, 11780. doi: 10.1021/jp407480b

    2. [2]

      (2) Xiong, D.; Li, Z.;Wang, H.;Wang, J. Green Chem. 2013, 15, 1941. doi: 10.1039/c3gc40411k

    3. [3]

      (3) Yuan, S.W.; Lü, R.; Yu, A. C. Acta Phys. -Chim. Sin. 2014, 30 (5), 987. [袁树威, 吕荣, 于安池. 物理化学学报, 2014, 30 (5), 987.] doi: 10.3866/PKU.WHXB201403112

    4. [4]

      (4) Ning, H.; Hou, M. Q.; Yang, D. Z.; Kang, X. C.; Han, B. X. Acta Phys. -Chim. Sin. 2013, 29 (10), 2107. [宁汇, 侯民强, 杨德重, 康欣晨, 韩布兴. 物理化学学报, 2013, 29 (10), 2107.] doi: 10.3866/PKU.WHXB201304172

    5. [5]

      (5) Bai, T.; Ge, R.; Gao, Y.; Chai, J.; Slattery, J. M. Phys. Chem. Chem. Phys. 2013, 15, 19301. doi: 10.1039/c3cp53441c

    6. [6]

      (6) Ma, X. X.;Wei, J.; Zhang, Q. B.; Tian, F.; Feng, Y. Y.; Guan,W. Ind. Eng. Chem. Res. 2013, 52, 9490. doi: 10.1021/ie401130d

    7. [7]

      (7) Hallett, J. P.;Welton, T. Chem. Rev. 2011, 111, 3508. doi: 10.1021/cr1003248

    8. [8]

      (8) Liu, Z.; Meng, X.; Zhang, R.; Xu, C.; Dong, H.; Hu, Y. AIChE J. 2014, 60, 2244. doi: 10.1002/aic.14394

    9. [9]

      (9) Wang, H. Y.;Wang, J. J.; Fan, M. H. Chem. Commun. 2012, 48, 392. doi: 10.1039/c1cc15600d

    10. [10]

      (10) Sun, X.; Chi, Y.; Mu, T. Green Chem. 2014, 16, 2736. doi: 10.1039/c4gc00085d

    11. [11]

      (11) Zhang, Y. Q.; Zhang, S. J.; Lu, X. M.; Zhou, Q.; Fan,W.; Zhang, X. P. Chem. Eur. J. 2009, 15, 3003. doi: 10.1002/chem.v15:12

    12. [12]

      (12) Wang, C. M.; Cui, G. K.; Luo, X. Y.; Xu, Y. J.; Li, H. R.; Dai, S. J. Am. Chem. Soc. 2011, 133, 11916. doi: 10.1021/ja204808h

    13. [13]

      (13) Ren, S.; Hou, Y.; Tian, S.; Chen, X.;Wu,W. J. Phys. Chem. B 2013, 117, 2482. doi: 10.1021/jp311707e

    14. [14]

      (14) Morris, R. E. Angew. Chem. Int. Edit. 2008, 47, 442. doi: 10.1002/anie.200704888

    15. [15]

      (15) Ding, K. L.; Miao, Z. J.; Liu, Z. M.; Zhang, Z. F.; Han, B. X.; An, G. M.; Miao, S. D.; Xie, Y. J. Am. Chem. Soc. 2007, 129, 6362. doi: 10.1021/ja070809c

    16. [16]

      (16) Kang, X.; Zhang, J.; Shang,W.;Wu, T.; Zhang, P.; Han, B.;Wu, Z.; Mo, G.; Xing, X. J. Am. Chem. Soc. 2014, 136, 3768. doi: 10.1021/ja5001517

    17. [17]

      (17) Seki, S.; Kobayashi, Y.; Miyashiro, H.; Ohno, Y.; Usami, A.; Mita, Y.; Kihira, N.;Watanabe, M.; Terada, N. J. Phys. Chem. B 2006, 110, 10228. doi: 10.1021/jp0620872

    18. [18]

      (18) Bayley, P. M.; Best, A. S.; MacFarlane, D. R.; Forsyth, M. ChemPhysChem 2011, 12, 823. doi: 10.1002/cphc.201000909

    19. [19]

      (19) Saint, J.; Best, A. S.; Hollenkamp, A. F.; Kerr, J.; Shin, J. H.; Doeff, M. M. J. Electrochem. Soc. 2008, 155, A172. doi: 10.1149/1.2820627

    20. [20]

      (20) Yang, P. X.; Liu, L.; Hou, J.; Zhang, J. Q. Chin. J. Chem. Phys. 2013, 26, 439. doi: 10.1063/1674-0068/26/04/439-444

    21. [21]

      (21) Chaban, V. V.; Prezhdo, O. V. J. Phys. Chem. Lett. 2014, 5, 1623. doi: 10.1021/jz500563q

    22. [22]

      (22) Pei, Y.; Huang, Y.; Li, L.;Wang, J. J. Chem. Thermodynamics 2014, 74, 231. doi: 10.1016/j. jct. 2014.02.007

    23. [23]

      (23) Swatloski, R. P.; Visser, A. E.; Reichert,W. M.; Broker, G. A.; Farina, L. M.; Holbrey, J. D.; Rogers, R. D. Chem. Commun. 2001, 2070. doi: 10.1039/B106601N

    24. [24]

      (24) Rivera-Rubero, S.; Baldelli, S. J. Am. Chem. Soc. 2004, 126, 11788. doi: 10.1021/ja0464894

    25. [25]

      (25) Swatloski, R. P.; Visser, A. E.; Reichert,W. M.; Broker, G. A.; Farina, L. M.; Holbrey, J. D.; Rogers, R. D. Green Chem. 2002, 4, 81. doi: 10.1039/b108905f

    26. [26]

      (26) Najdanovic-Visak, V.; Esperanca, J.; Rebelo, L. P. N.; da Ponte, M. N.; Guedes, H. J. R.; Seddon, K. R.; de Sousa, H. C.; Szydlowski, J. J. Phys. Chem. B 2003, 107, 12797. doi: 10.1021/jp034576x

    27. [27]

      (27) Najdanovic-Visak, V.; Esperanca, J.; Rebelo, L. P. N.; da Ponte, M. N.; Guedes, H. J. R.; Seddon, K. R.; Szydlowski, J. Phys. Chem. Chem. Phys. 2002, 4, 1701. doi: 10.1039/b201723g

    28. [28]

      (28) Canongia Lopes, J. N.; Costa mes, M. F.; Pádua, A. A. H. J. Phys. Chem. B 2006, 110, 16816. doi: 10.1021/jp063603r

    29. [29]

      (29) Méndez-Morales, T.; Carrete, J. S.; Cabeza, O. S.; Galle , L. J.; Varela, L. M. J. Phys. Chem. B 2011, 115, 6995. doi: 10.1021/jp202692g

    30. [30]

      (30) Méndez-Morales, T.; Carrete, J.; Cabeza, O.; Galle , L. J.; Varela, L. M. J. Phys. Chem. B 2011, 115, 11170. doi: 10.1021/jp206341z

    31. [31]

      (31) Mutelet, F.; Ortega-Villa, V.; Moïse, J. C.; Jaubert, J. N. l.; Acree,W. E. J. Chem. Eng. Data 2011, 56, 3598. doi: 10.1021/je200454d

    32. [32]

      (32) Gupta, K. M.; Hu, Z. Q.; Jiang, J.W. RSC Adv. 2013, 3, 12794. doi: 10.1039/c3ra40807h

    33. [33]

      (33) Ferreira, A. R.; Freire, M. G.; Ribeiro, J. C.; Lopes, F. M.; Crespo, J. G.; Coutinho, J. A. P. Ind. Eng. Chem. Res. 2012, 51, 3483. doi: 10.1021/ie2025322

    34. [34]

      (34) Ning, H.; Hou, M. Q.; Mei, Q. Q.; Yang, D. Z.; Han, B. X. Acta Phys. -Chim. Sin. 2013, 29 (4), 678. [宁汇, 侯民强, 梅清清, 杨德重, 韩布兴. 物理化学学报, 2013, 29 (4), 678.] doi: 10.3866/PKU.WHXB201301314

    35. [35]

      (35) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4, 435. doi: 10.1021/ct700301q

    36. [36]

      (36) Jorgensen,W. L.; Maxwell, D. S.; TiradoRives, J. J. Am. Chem. Soc. 1996, 118, 11225. doi: 10.1021/ja9621760

    37. [37]

      (37) Bhargava, B. L.; Balasubramanian, S. J. Chem. Phys. 2007, 127, 114510. doi: 10.1063/1.2772268

    38. [38]

      (38) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comput. Chem. 1997, 18, 1463.

    39. [39]

      (39) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577. doi: 10.1063/1.470117

    40. [40]

      (40) Nosé, S. Mol. Phys. 1984, 52, 255. doi: 10.1080/00268978400101201

    41. [41]

      (41) Nosé, S.; Klein, M. L. Mol. Phys. 1983, 50, 1055. doi: 10.1080/00268978300102851

    42. [42]

      (42) Parrinello, M.; Rahman, A. J. Appl. Phys. 1981, 52, 7182. doi: 10.1063/1.328693

    43. [43]

      (43) Martínez, L.; Andrade, R.; Birgin, E. G.; Martínez, J. M. J. Comput. Chem. 2009, 30, 2157. doi: 10.1002/jcc.v30:13

    44. [44]

      (44) Canongia Lopes, J. N. A.; Pádua, A. A. H. J. Phys. Chem. B 2006, 110, 3330. doi: 10.1021/jp056006y

    45. [45]

      (45) Méndez-Morales, T.; Carrete, J.; García, M.; Cabeza, O.; Galle , L. J.; Varela, L. M. J. Phys. Chem. B 2011, 115, 15313. doi: 10.1021/jp209563b

    46. [46]

      (46) Raju, S. G.; Balasubramanian, S. J. Phys. Chem. B 2009, 113, 4799. doi: 10.1021/jp8111777

    47. [47]

      (47) Li,W.; Zhang, Z.; Han, B.; Hu, S.; Xie, Y.; Yang, G. J. Phys. Chem. B 2007, 111, 6452.


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    5. [5]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    6. [6]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    7. [7]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    8. [8]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    15. [15]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    16. [16]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    17. [17]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    18. [18]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(739)
  • Abstract views(542)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return