Citation:
MEI Qing-Qing, HOU Min-Qiang, NING Hui, MA Jun, YANG De-Zhong, HAN Bu-Xing. Microstructure and Intermolecular Interactions of [Bmim][PF6]+Water+ Alcohol Systems: A Molecular Dynamics Simulation Study[J]. Acta Physico-Chimica Sinica,
;2014, 30(12): 2210-2215.
doi:
10.3866/PKU.WHXB201410151
-
Studying the microstructure and intermolecular interactions of ionic liquid (IL) systems is of great importance. In this work, molecular dynamics (MD) simulations were performed on 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6])+water+ethanol and [Bmim][PF6]+water+isopropanol ternary systems. Radial distribution functions were calculated, and the interaction energies between ion pairs and mixed solvents of different compositions were decomposed into Coulombic interaction energies and Lennard-Jones (LJ) potentials. The microstructure and intermolecular interactions of the ternary systems were studied based on the results, and the phase behaviors of the systems were discussed. The results show that water tends to interact with the anion and polar part of the cation, while alcohols prefer to interact with the anion and nonpolar part of the cation. The Coulombic interaction dominates over the anion-solvent interaction, while the LJ interaction dominates over the cation-solvent interaction. The association state of the ion pair has a small effect on the LJ interaction, but a significant effect on the Coulombic interaction.
-
-
-
[1]
(1) Huo, F.; Liu, Z.;Wang,W. J. Phys. Chem. B 2013, 117, 11780. doi: 10.1021/jp407480b
-
[2]
(2) Xiong, D.; Li, Z.;Wang, H.;Wang, J. Green Chem. 2013, 15, 1941. doi: 10.1039/c3gc40411k
-
[3]
(3) Yuan, S.W.; Lü, R.; Yu, A. C. Acta Phys. -Chim. Sin. 2014, 30 (5), 987. [袁树威, 吕荣, 于安池. 物理化学学报, 2014, 30 (5), 987.] doi: 10.3866/PKU.WHXB201403112
-
[4]
(4) Ning, H.; Hou, M. Q.; Yang, D. Z.; Kang, X. C.; Han, B. X. Acta Phys. -Chim. Sin. 2013, 29 (10), 2107. [宁汇, 侯民强, 杨德重, 康欣晨, 韩布兴. 物理化学学报, 2013, 29 (10), 2107.] doi: 10.3866/PKU.WHXB201304172
-
[5]
(5) Bai, T.; Ge, R.; Gao, Y.; Chai, J.; Slattery, J. M. Phys. Chem. Chem. Phys. 2013, 15, 19301. doi: 10.1039/c3cp53441c
-
[6]
(6) Ma, X. X.;Wei, J.; Zhang, Q. B.; Tian, F.; Feng, Y. Y.; Guan,W. Ind. Eng. Chem. Res. 2013, 52, 9490. doi: 10.1021/ie401130d
-
[7]
(7) Hallett, J. P.;Welton, T. Chem. Rev. 2011, 111, 3508. doi: 10.1021/cr1003248
-
[8]
(8) Liu, Z.; Meng, X.; Zhang, R.; Xu, C.; Dong, H.; Hu, Y. AIChE J. 2014, 60, 2244. doi: 10.1002/aic.14394
-
[9]
(9) Wang, H. Y.;Wang, J. J.; Fan, M. H. Chem. Commun. 2012, 48, 392. doi: 10.1039/c1cc15600d
-
[10]
(10) Sun, X.; Chi, Y.; Mu, T. Green Chem. 2014, 16, 2736. doi: 10.1039/c4gc00085d
-
[11]
(11) Zhang, Y. Q.; Zhang, S. J.; Lu, X. M.; Zhou, Q.; Fan,W.; Zhang, X. P. Chem. Eur. J. 2009, 15, 3003. doi: 10.1002/chem.v15:12
-
[12]
(12) Wang, C. M.; Cui, G. K.; Luo, X. Y.; Xu, Y. J.; Li, H. R.; Dai, S. J. Am. Chem. Soc. 2011, 133, 11916. doi: 10.1021/ja204808h
-
[13]
(13) Ren, S.; Hou, Y.; Tian, S.; Chen, X.;Wu,W. J. Phys. Chem. B 2013, 117, 2482. doi: 10.1021/jp311707e
-
[14]
(14) Morris, R. E. Angew. Chem. Int. Edit. 2008, 47, 442. doi: 10.1002/anie.200704888
-
[15]
(15) Ding, K. L.; Miao, Z. J.; Liu, Z. M.; Zhang, Z. F.; Han, B. X.; An, G. M.; Miao, S. D.; Xie, Y. J. Am. Chem. Soc. 2007, 129, 6362. doi: 10.1021/ja070809c
-
[16]
(16) Kang, X.; Zhang, J.; Shang,W.;Wu, T.; Zhang, P.; Han, B.;Wu, Z.; Mo, G.; Xing, X. J. Am. Chem. Soc. 2014, 136, 3768. doi: 10.1021/ja5001517
-
[17]
(17) Seki, S.; Kobayashi, Y.; Miyashiro, H.; Ohno, Y.; Usami, A.; Mita, Y.; Kihira, N.;Watanabe, M.; Terada, N. J. Phys. Chem. B 2006, 110, 10228. doi: 10.1021/jp0620872
-
[18]
(18) Bayley, P. M.; Best, A. S.; MacFarlane, D. R.; Forsyth, M. ChemPhysChem 2011, 12, 823. doi: 10.1002/cphc.201000909
-
[19]
(19) Saint, J.; Best, A. S.; Hollenkamp, A. F.; Kerr, J.; Shin, J. H.; Doeff, M. M. J. Electrochem. Soc. 2008, 155, A172. doi: 10.1149/1.2820627
-
[20]
(20) Yang, P. X.; Liu, L.; Hou, J.; Zhang, J. Q. Chin. J. Chem. Phys. 2013, 26, 439. doi: 10.1063/1674-0068/26/04/439-444
-
[21]
(21) Chaban, V. V.; Prezhdo, O. V. J. Phys. Chem. Lett. 2014, 5, 1623. doi: 10.1021/jz500563q
-
[22]
(22) Pei, Y.; Huang, Y.; Li, L.;Wang, J. J. Chem. Thermodynamics 2014, 74, 231. doi: 10.1016/j. jct. 2014.02.007
-
[23]
(23) Swatloski, R. P.; Visser, A. E.; Reichert,W. M.; Broker, G. A.; Farina, L. M.; Holbrey, J. D.; Rogers, R. D. Chem. Commun. 2001, 2070. doi: 10.1039/B106601N
-
[24]
(24) Rivera-Rubero, S.; Baldelli, S. J. Am. Chem. Soc. 2004, 126, 11788. doi: 10.1021/ja0464894
-
[25]
(25) Swatloski, R. P.; Visser, A. E.; Reichert,W. M.; Broker, G. A.; Farina, L. M.; Holbrey, J. D.; Rogers, R. D. Green Chem. 2002, 4, 81. doi: 10.1039/b108905f
-
[26]
(26) Najdanovic-Visak, V.; Esperanca, J.; Rebelo, L. P. N.; da Ponte, M. N.; Guedes, H. J. R.; Seddon, K. R.; de Sousa, H. C.; Szydlowski, J. J. Phys. Chem. B 2003, 107, 12797. doi: 10.1021/jp034576x
-
[27]
(27) Najdanovic-Visak, V.; Esperanca, J.; Rebelo, L. P. N.; da Ponte, M. N.; Guedes, H. J. R.; Seddon, K. R.; Szydlowski, J. Phys. Chem. Chem. Phys. 2002, 4, 1701. doi: 10.1039/b201723g
-
[28]
(28) Canongia Lopes, J. N.; Costa mes, M. F.; Pádua, A. A. H. J. Phys. Chem. B 2006, 110, 16816. doi: 10.1021/jp063603r
-
[29]
(29) Méndez-Morales, T.; Carrete, J. S.; Cabeza, O. S.; Galle , L. J.; Varela, L. M. J. Phys. Chem. B 2011, 115, 6995. doi: 10.1021/jp202692g
-
[30]
(30) Méndez-Morales, T.; Carrete, J.; Cabeza, O.; Galle , L. J.; Varela, L. M. J. Phys. Chem. B 2011, 115, 11170. doi: 10.1021/jp206341z
-
[31]
(31) Mutelet, F.; Ortega-Villa, V.; Moïse, J. C.; Jaubert, J. N. l.; Acree,W. E. J. Chem. Eng. Data 2011, 56, 3598. doi: 10.1021/je200454d
-
[32]
(32) Gupta, K. M.; Hu, Z. Q.; Jiang, J.W. RSC Adv. 2013, 3, 12794. doi: 10.1039/c3ra40807h
-
[33]
(33) Ferreira, A. R.; Freire, M. G.; Ribeiro, J. C.; Lopes, F. M.; Crespo, J. G.; Coutinho, J. A. P. Ind. Eng. Chem. Res. 2012, 51, 3483. doi: 10.1021/ie2025322
-
[34]
(34) Ning, H.; Hou, M. Q.; Mei, Q. Q.; Yang, D. Z.; Han, B. X. Acta Phys. -Chim. Sin. 2013, 29 (4), 678. [宁汇, 侯民强, 梅清清, 杨德重, 韩布兴. 物理化学学报, 2013, 29 (4), 678.] doi: 10.3866/PKU.WHXB201301314
-
[35]
(35) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4, 435. doi: 10.1021/ct700301q
-
[36]
(36) Jorgensen,W. L.; Maxwell, D. S.; TiradoRives, J. J. Am. Chem. Soc. 1996, 118, 11225. doi: 10.1021/ja9621760
-
[37]
(37) Bhargava, B. L.; Balasubramanian, S. J. Chem. Phys. 2007, 127, 114510. doi: 10.1063/1.2772268
-
[38]
(38) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comput. Chem. 1997, 18, 1463.
-
[39]
(39) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577. doi: 10.1063/1.470117
-
[40]
(40) Nosé, S. Mol. Phys. 1984, 52, 255. doi: 10.1080/00268978400101201
-
[41]
(41) Nosé, S.; Klein, M. L. Mol. Phys. 1983, 50, 1055. doi: 10.1080/00268978300102851
-
[42]
(42) Parrinello, M.; Rahman, A. J. Appl. Phys. 1981, 52, 7182. doi: 10.1063/1.328693
-
[43]
(43) Martínez, L.; Andrade, R.; Birgin, E. G.; Martínez, J. M. J. Comput. Chem. 2009, 30, 2157. doi: 10.1002/jcc.v30:13
-
[44]
(44) Canongia Lopes, J. N. A.; Pádua, A. A. H. J. Phys. Chem. B 2006, 110, 3330. doi: 10.1021/jp056006y
-
[45]
(45) Méndez-Morales, T.; Carrete, J.; García, M.; Cabeza, O.; Galle , L. J.; Varela, L. M. J. Phys. Chem. B 2011, 115, 15313. doi: 10.1021/jp209563b
-
[46]
(46) Raju, S. G.; Balasubramanian, S. J. Phys. Chem. B 2009, 113, 4799. doi: 10.1021/jp8111777
-
[47]
(47) Li,W.; Zhang, Z.; Han, B.; Hu, S.; Xie, Y.; Yang, G. J. Phys. Chem. B 2007, 111, 6452.
-
[1]
-
-
-
[1]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[2]
Zhi Zhou , Yu-E Lian , Yuqing Li , Hui Gao , Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104
-
[3]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[4]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[5]
Zhenming Xu , Yibo Wang , Zhenhui Liu , Duo Chen , Mingbo Zheng , Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096
-
[6]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[7]
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
-
[8]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
-
[9]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[10]
Jinghua Wang , Yanxin Yu , Yanbiao Ren , Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057
-
[11]
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
-
[12]
Zhangshu Wang , Xin Zhang , Jixin Han , Xuebing Fang , Xiufeng Zhao , Zeyu Gu , Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056
-
[13]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[14]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[15]
Yanan Jiang , Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058
-
[16]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[17]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[18]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[19]
Yang Chen , Xiuying Wang , Nengqin Jia . Ideological and Political Design, Blended Teaching Practice of Physical Chemistry Experiment: Pb-Sn Binary Metal Phase Diagram. University Chemistry, 2025, 40(3): 223-229. doi: 10.12461/PKU.DXHX202405184
-
[20]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[1]
Metrics
- PDF Downloads(739)
- Abstract views(592)
- HTML views(2)