Citation: MEI Qing-Qing, HOU Min-Qiang, NING Hui, MA Jun, YANG De-Zhong, HAN Bu-Xing. Microstructure and Intermolecular Interactions of [Bmim][PF6]+Water+ Alcohol Systems: A Molecular Dynamics Simulation Study[J]. Acta Physico-Chimica Sinica, ;2014, 30(12): 2210-2215. doi: 10.3866/PKU.WHXB201410151 shu

Microstructure and Intermolecular Interactions of [Bmim][PF6]+Water+ Alcohol Systems: A Molecular Dynamics Simulation Study

  • Received Date: 16 August 2014
    Available Online: 15 October 2014

    Fund Project: 国家自然科学基金(21133009, U1232203)资助项目 (21133009, U1232203)

  • Studying the microstructure and intermolecular interactions of ionic liquid (IL) systems is of great importance. In this work, molecular dynamics (MD) simulations were performed on 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6])+water+ethanol and [Bmim][PF6]+water+isopropanol ternary systems. Radial distribution functions were calculated, and the interaction energies between ion pairs and mixed solvents of different compositions were decomposed into Coulombic interaction energies and Lennard-Jones (LJ) potentials. The microstructure and intermolecular interactions of the ternary systems were studied based on the results, and the phase behaviors of the systems were discussed. The results show that water tends to interact with the anion and polar part of the cation, while alcohols prefer to interact with the anion and nonpolar part of the cation. The Coulombic interaction dominates over the anion-solvent interaction, while the LJ interaction dominates over the cation-solvent interaction. The association state of the ion pair has a small effect on the LJ interaction, but a significant effect on the Coulombic interaction.

  • 加载中
    1. [1]

      (1) Huo, F.; Liu, Z.;Wang,W. J. Phys. Chem. B 2013, 117, 11780. doi: 10.1021/jp407480b

    2. [2]

      (2) Xiong, D.; Li, Z.;Wang, H.;Wang, J. Green Chem. 2013, 15, 1941. doi: 10.1039/c3gc40411k

    3. [3]

      (3) Yuan, S.W.; Lü, R.; Yu, A. C. Acta Phys. -Chim. Sin. 2014, 30 (5), 987. [袁树威, 吕荣, 于安池. 物理化学学报, 2014, 30 (5), 987.] doi: 10.3866/PKU.WHXB201403112

    4. [4]

      (4) Ning, H.; Hou, M. Q.; Yang, D. Z.; Kang, X. C.; Han, B. X. Acta Phys. -Chim. Sin. 2013, 29 (10), 2107. [宁汇, 侯民强, 杨德重, 康欣晨, 韩布兴. 物理化学学报, 2013, 29 (10), 2107.] doi: 10.3866/PKU.WHXB201304172

    5. [5]

      (5) Bai, T.; Ge, R.; Gao, Y.; Chai, J.; Slattery, J. M. Phys. Chem. Chem. Phys. 2013, 15, 19301. doi: 10.1039/c3cp53441c

    6. [6]

      (6) Ma, X. X.;Wei, J.; Zhang, Q. B.; Tian, F.; Feng, Y. Y.; Guan,W. Ind. Eng. Chem. Res. 2013, 52, 9490. doi: 10.1021/ie401130d

    7. [7]

      (7) Hallett, J. P.;Welton, T. Chem. Rev. 2011, 111, 3508. doi: 10.1021/cr1003248

    8. [8]

      (8) Liu, Z.; Meng, X.; Zhang, R.; Xu, C.; Dong, H.; Hu, Y. AIChE J. 2014, 60, 2244. doi: 10.1002/aic.14394

    9. [9]

      (9) Wang, H. Y.;Wang, J. J.; Fan, M. H. Chem. Commun. 2012, 48, 392. doi: 10.1039/c1cc15600d

    10. [10]

      (10) Sun, X.; Chi, Y.; Mu, T. Green Chem. 2014, 16, 2736. doi: 10.1039/c4gc00085d

    11. [11]

      (11) Zhang, Y. Q.; Zhang, S. J.; Lu, X. M.; Zhou, Q.; Fan,W.; Zhang, X. P. Chem. Eur. J. 2009, 15, 3003. doi: 10.1002/chem.v15:12

    12. [12]

      (12) Wang, C. M.; Cui, G. K.; Luo, X. Y.; Xu, Y. J.; Li, H. R.; Dai, S. J. Am. Chem. Soc. 2011, 133, 11916. doi: 10.1021/ja204808h

    13. [13]

      (13) Ren, S.; Hou, Y.; Tian, S.; Chen, X.;Wu,W. J. Phys. Chem. B 2013, 117, 2482. doi: 10.1021/jp311707e

    14. [14]

      (14) Morris, R. E. Angew. Chem. Int. Edit. 2008, 47, 442. doi: 10.1002/anie.200704888

    15. [15]

      (15) Ding, K. L.; Miao, Z. J.; Liu, Z. M.; Zhang, Z. F.; Han, B. X.; An, G. M.; Miao, S. D.; Xie, Y. J. Am. Chem. Soc. 2007, 129, 6362. doi: 10.1021/ja070809c

    16. [16]

      (16) Kang, X.; Zhang, J.; Shang,W.;Wu, T.; Zhang, P.; Han, B.;Wu, Z.; Mo, G.; Xing, X. J. Am. Chem. Soc. 2014, 136, 3768. doi: 10.1021/ja5001517

    17. [17]

      (17) Seki, S.; Kobayashi, Y.; Miyashiro, H.; Ohno, Y.; Usami, A.; Mita, Y.; Kihira, N.;Watanabe, M.; Terada, N. J. Phys. Chem. B 2006, 110, 10228. doi: 10.1021/jp0620872

    18. [18]

      (18) Bayley, P. M.; Best, A. S.; MacFarlane, D. R.; Forsyth, M. ChemPhysChem 2011, 12, 823. doi: 10.1002/cphc.201000909

    19. [19]

      (19) Saint, J.; Best, A. S.; Hollenkamp, A. F.; Kerr, J.; Shin, J. H.; Doeff, M. M. J. Electrochem. Soc. 2008, 155, A172. doi: 10.1149/1.2820627

    20. [20]

      (20) Yang, P. X.; Liu, L.; Hou, J.; Zhang, J. Q. Chin. J. Chem. Phys. 2013, 26, 439. doi: 10.1063/1674-0068/26/04/439-444

    21. [21]

      (21) Chaban, V. V.; Prezhdo, O. V. J. Phys. Chem. Lett. 2014, 5, 1623. doi: 10.1021/jz500563q

    22. [22]

      (22) Pei, Y.; Huang, Y.; Li, L.;Wang, J. J. Chem. Thermodynamics 2014, 74, 231. doi: 10.1016/j. jct. 2014.02.007

    23. [23]

      (23) Swatloski, R. P.; Visser, A. E.; Reichert,W. M.; Broker, G. A.; Farina, L. M.; Holbrey, J. D.; Rogers, R. D. Chem. Commun. 2001, 2070. doi: 10.1039/B106601N

    24. [24]

      (24) Rivera-Rubero, S.; Baldelli, S. J. Am. Chem. Soc. 2004, 126, 11788. doi: 10.1021/ja0464894

    25. [25]

      (25) Swatloski, R. P.; Visser, A. E.; Reichert,W. M.; Broker, G. A.; Farina, L. M.; Holbrey, J. D.; Rogers, R. D. Green Chem. 2002, 4, 81. doi: 10.1039/b108905f

    26. [26]

      (26) Najdanovic-Visak, V.; Esperanca, J.; Rebelo, L. P. N.; da Ponte, M. N.; Guedes, H. J. R.; Seddon, K. R.; de Sousa, H. C.; Szydlowski, J. J. Phys. Chem. B 2003, 107, 12797. doi: 10.1021/jp034576x

    27. [27]

      (27) Najdanovic-Visak, V.; Esperanca, J.; Rebelo, L. P. N.; da Ponte, M. N.; Guedes, H. J. R.; Seddon, K. R.; Szydlowski, J. Phys. Chem. Chem. Phys. 2002, 4, 1701. doi: 10.1039/b201723g

    28. [28]

      (28) Canongia Lopes, J. N.; Costa mes, M. F.; Pádua, A. A. H. J. Phys. Chem. B 2006, 110, 16816. doi: 10.1021/jp063603r

    29. [29]

      (29) Méndez-Morales, T.; Carrete, J. S.; Cabeza, O. S.; Galle , L. J.; Varela, L. M. J. Phys. Chem. B 2011, 115, 6995. doi: 10.1021/jp202692g

    30. [30]

      (30) Méndez-Morales, T.; Carrete, J.; Cabeza, O.; Galle , L. J.; Varela, L. M. J. Phys. Chem. B 2011, 115, 11170. doi: 10.1021/jp206341z

    31. [31]

      (31) Mutelet, F.; Ortega-Villa, V.; Moïse, J. C.; Jaubert, J. N. l.; Acree,W. E. J. Chem. Eng. Data 2011, 56, 3598. doi: 10.1021/je200454d

    32. [32]

      (32) Gupta, K. M.; Hu, Z. Q.; Jiang, J.W. RSC Adv. 2013, 3, 12794. doi: 10.1039/c3ra40807h

    33. [33]

      (33) Ferreira, A. R.; Freire, M. G.; Ribeiro, J. C.; Lopes, F. M.; Crespo, J. G.; Coutinho, J. A. P. Ind. Eng. Chem. Res. 2012, 51, 3483. doi: 10.1021/ie2025322

    34. [34]

      (34) Ning, H.; Hou, M. Q.; Mei, Q. Q.; Yang, D. Z.; Han, B. X. Acta Phys. -Chim. Sin. 2013, 29 (4), 678. [宁汇, 侯民强, 梅清清, 杨德重, 韩布兴. 物理化学学报, 2013, 29 (4), 678.] doi: 10.3866/PKU.WHXB201301314

    35. [35]

      (35) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4, 435. doi: 10.1021/ct700301q

    36. [36]

      (36) Jorgensen,W. L.; Maxwell, D. S.; TiradoRives, J. J. Am. Chem. Soc. 1996, 118, 11225. doi: 10.1021/ja9621760

    37. [37]

      (37) Bhargava, B. L.; Balasubramanian, S. J. Chem. Phys. 2007, 127, 114510. doi: 10.1063/1.2772268

    38. [38]

      (38) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comput. Chem. 1997, 18, 1463.

    39. [39]

      (39) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577. doi: 10.1063/1.470117

    40. [40]

      (40) Nosé, S. Mol. Phys. 1984, 52, 255. doi: 10.1080/00268978400101201

    41. [41]

      (41) Nosé, S.; Klein, M. L. Mol. Phys. 1983, 50, 1055. doi: 10.1080/00268978300102851

    42. [42]

      (42) Parrinello, M.; Rahman, A. J. Appl. Phys. 1981, 52, 7182. doi: 10.1063/1.328693

    43. [43]

      (43) Martínez, L.; Andrade, R.; Birgin, E. G.; Martínez, J. M. J. Comput. Chem. 2009, 30, 2157. doi: 10.1002/jcc.v30:13

    44. [44]

      (44) Canongia Lopes, J. N. A.; Pádua, A. A. H. J. Phys. Chem. B 2006, 110, 3330. doi: 10.1021/jp056006y

    45. [45]

      (45) Méndez-Morales, T.; Carrete, J.; García, M.; Cabeza, O.; Galle , L. J.; Varela, L. M. J. Phys. Chem. B 2011, 115, 15313. doi: 10.1021/jp209563b

    46. [46]

      (46) Raju, S. G.; Balasubramanian, S. J. Phys. Chem. B 2009, 113, 4799. doi: 10.1021/jp8111777

    47. [47]

      (47) Li,W.; Zhang, Z.; Han, B.; Hu, S.; Xie, Y.; Yang, G. J. Phys. Chem. B 2007, 111, 6452.


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    3. [3]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    4. [4]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    5. [5]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    8. [8]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    9. [9]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    10. [10]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    11. [11]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    12. [12]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    13. [13]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    14. [14]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    15. [15]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    16. [16]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    17. [17]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    18. [18]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    19. [19]

      Yang Chen Xiuying Wang Nengqin Jia . Ideological and Political Design, Blended Teaching Practice of Physical Chemistry Experiment: Pb-Sn Binary Metal Phase Diagram. University Chemistry, 2025, 40(3): 223-229. doi: 10.12461/PKU.DXHX202405184

    20. [20]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

Metrics
  • PDF Downloads(739)
  • Abstract views(592)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return