Citation: LUO Yun-Qing, QIU Mei, YANG Wei, ZHU Jia, LI Yi, HUANG Xin, ZHANG Yong-Fan. Configuration and Electronic Structure of W3O9 Clusters Supported on Li- and Al-Doped M (001) Surfaces[J]. Acta Physico-Chimica Sinica, ;2014, 30(12): 2224-2232. doi: 10.3866/PKU.WHXB201410101
-
The configuration, stability, and electronic structure of W3O9 clusters deposited on Li- and Al-doped M (001) surfaces were investigated using first- principles molecular dynamic simulations combined with quantum mechanical calculations. The results indicated that when the doping was in the top layer of the M (001) surface, the type of dopant had a great influence on the configuration of theW3O9 clusters. In the presence of electron-deficient Li doping, the cyclic conformation of the gas-phase W3O9 clusters was not stable, and it changed to a chain-like structure. While the introduction of the Al dopant made the surface electron-rich, the W3O9 clusters preferred parallel and vertical arrangements, respectively; the stabilities of the two configurations were similar, except that in the former case the one terminal oxygen of the clusters became a capped oxygen via bonding with three W atoms. When the doping was present in the sublayer, the W3O9 clusters still showed a cyclic conformation, and favored a vertical deposition model. In comparison with the Li-doping of the M (001) surface, the Al-doping significantly enhanced the interactions between theW3O9 and the M (001) surface, and more electrons were transferred from the substrate to certain W atoms, which would have significant effects on the catalytic performance of the W3O9 clusters.
-
-
[1]
(1) Lebarbier, V.; Clet, G.; Houalla, M. J. Phys. Chem. B 2006, 110, 22608. doi: 10.1021/jp064202e
-
[2]
(2) Kim, Y. K.; Rousseau, R.; Kay, B. D.; White, J. M.; Dohnálek, K. J. Am. Chem. Soc. 2008, 130, 5059. doi: 10.1021/ja800730g
-
[3]
(3) Li, S.; Li, Z.; Zhang, Z.; Kay, B. D.; Rousseau, R.; Dohnálek, Z. J. Phys. Chem. C 2012, 116, 908. doi: 10.1021/jp2093324
-
[4]
(4) Meijers, S.; Gielgens, L. H.; Ponec, V. J. Catal. 1995, 156, 147. doi: 10.1006/jcat.1995.1240
-
[5]
(5) Yoshinaga, Y.; Kudo, M.; Hasegawa, S.; Okuhara, T. Appl. Surf. Sci. 1997, 121, 339.
-
[6]
(6) Bondarchuk, O.; Huang, X.; Kim, J.; Kay, B. D.;Wang, L. S.; White, J. M.; Dohnálek, Z. Angew. Chem. Int. Edit. 2006, 45, 4786.
-
[7]
(7) Li, Z. J.; Zhang, Z. R.; Kim, Y. K.; Smith, R. S.; Netzer, F.; Kay, B. D.; Rousseau, R.; Dohnalek, Z. J. Phys. Chem. C 2011, 115, 5773. doi: 10.1021/jp1108976
-
[8]
(8) Wagner, M.; Surnev, S.; Ramsey, M. G.; Barcaro, G.; Sementa, L.; Negreiros, F. R.; Fortunelli, A.; Dohnalek, Z.; Netzer, F. P. J. Phys. Chem. C 2011, 115, 23480. doi: 10.1021/jp208207e
-
[9]
(9) Zhu, J.; Lin, S.;Wen, X.; Fang, Z.; Li, Y.; Zhang, Y.; Huang, X.; Ning, L.; Ding, K.; Chen,W. J. Chem. Phys. 2013, 138, 34711. doi: 10.1063/1.4776219
-
[10]
(10) Kwapien, K.; Paier, J.; Sauer, J. Angew. Chem. Int. Edit. 2014, 53, 8774. doi: 10.1002/anie.v53.33
-
[11]
(11) Myrach, P.; Nilius, N.; Levchenko, S. V.; nchar, A.; Risse, T.; Dinse, K.; Boatner, L. A.; Frandsen,W.; Horn, R.; Freund, H.; Schlögl, R.; Scheffler, M. ChemCatChem 2010, 2, 854. doi: 10.1002/cctc.201000083
-
[12]
(12) Lintuluoto, M.; Nakamura, Y. J. Mol. Struct. 2004, 674, 207. doi: 10.1016/j.theochem.2003.12.051
-
[13]
(13) Scanlon, D. O.;Walsh, A.; Morgan, B. J.; Nolan, M.; Fearon, J.; Watson, G.W. J. Phys. Chem. C 2007, 111, 7971. doi: 10.1021/jp070200y
-
[14]
(14) Shao, X.; Prada, S.; Giordano, L.; Pacchioni, G.; Nilius, N.; Freund, H. J. Angew. Chem. Int. Edit. 2011, 50, 11525. doi: 10.1002/anie.v50.48
-
[15]
(15) Ito, T.; Lunsford, J. H. Nature 1985, 314, 721.
-
[16]
(16) Wu, M. C.; Truong, C. M.; odman, D.W. Phys. Rev. B 1992, 46, 12688. doi: 10.1103/PhysRevB.46.12688
-
[17]
(17) Hutchings, G. J.; Scurrell, M. S.;Woodhouse, J. R. J. Chem. Soc. Chem. Commun. 1989, 765.
-
[18]
(18) Mammen, L.; Narasimhan, S.; de Gironcoli, S. J. Am. Chem. Soc. 2011, 133, 2801. doi: 10.1021/ja109663g
-
[19]
(19) Xiao, J. T.; Li, J. J.; Yin, Y.; Lin, Z. L.; Qi, K. C.;Wang, X. J.; Cao, G. C. Adv. Mater. Res. 2013, 815, 673. doi: 10.4028/www.scientific.net/AMR.815
-
[20]
(20) Sarmadian, N.; Saniz, R.; Lamoen, D.; Partoens, B. Phys. Rev. B 2012, 86, 205129. doi: 10.1103/PhysRevB.86.205129
-
[21]
(21) Prada, S.; Giordano, L.; Pacchioni, G. J. Phys. Chem. C 2012, 116, 5781. doi: 10.1021/jp211363q
-
[22]
(22) Stavale, F.; Nilius, N.; Freund, H. J. New. J. Phys. 2012, 14, 033006. doi: 10.1088/1367-2630/14/3/033006
-
[23]
(23) Prada, S.; Giordano, L.; Pacchioni, G. J. Phys. Chem. C 2013, 117, 9943. doi: 10.1021/jp401983m
-
[24]
(24) Pozzo, M.; Alfe, D. Int. J. Hydrog. Energy 2009, 34, 1922. doi: 10.1016/j.ijhydene.2008.11.109
-
[25]
(25) Pascual, J. L.; Savoini, B.; nzalez, R. Phys. Rev. B 2004, 70, 045109. doi: 10.1103/PhysRevB.70.045109
-
[26]
(26) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671. doi: 10.1103/PhysRevB.46.6671
-
[27]
(27) Kresse, G.; Joubert, J. Phys. Rev. B 1999, 59, 1758.
-
[28]
(28) Causa, M.; Dovesi, R.; Pisani, C.; Roetti, C. Surf. Sci. 1986, 175, 551. doi: 10.1016/0039-6028(86)90012-9
-
[29]
(29) Blochl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953
-
[30]
(30) Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169
-
[31]
(31) Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0
-
[32]
(32) Nose, S. J. Chem. Phys. 1984, 81, 511. doi: 10.1063/1.447334
-
[33]
(33) Zhu, J.; Jin, H.; Chen,W.; Li, Y.; Zhang, Y.; Ning, L.; Huang, X.; Ding, K.; Chen,W. J. Phys. Chem. C 2009, 113, 17509. doi: 10.1021/jp906194t
-
[34]
(34) Zhang, Y.; Giordano, L.; Pacchioni, G. J. Phys. Chem. C 2007, 111, 7437.
-
[35]
(35) Maleknia, S.; Brodbelt, J.; Pope, K. J. Am. Soc. Mass Spectrom. 1991, 2, 212. doi: 10.1016/1044-0305(91)80046-A
-
[36]
(36) Li, S.; Hennigan, J. M.; Dixon, D. A.; Peterson, K. A. J. Phys. Chem. A 2009, 113, 7861.
-
[37]
(37) Huang, X.; Zhai, H. J.; Li, J.;Wang, L. S. J. Phys. Chem. A 2006, 110, 85.
-
[38]
(38) Huang, X.; Zhai, H. J.; Kiran, B.;Wang, L. S. Angew. Chem. Int. Edit. 2005, 44, 7251.
-
[39]
(39) Zhu, J.; Giordano, L.; Lin, S.; Fang, Z.; Li, Y.; Huang, X.; Zhang, Y.; Pacchioni, G. J. Phys. Chem. C. 2012, 116, 17668. doi: 10.1021/jp3051609
-
[40]
(40) Di Valentin, C.; Rosa, M.; Pacchioni, G. J. Am. Chem. Soc. 2012, 134, 14086. doi: 10.1021/ja304661g
-
[1]
-
-
[1]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[2]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[3]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[4]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[5]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[6]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[7]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[8]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[9]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[10]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[11]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[12]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[13]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[14]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[15]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[16]
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
-
[17]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[18]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[19]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[20]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[1]
Metrics
- PDF Downloads(510)
- Abstract views(661)
- HTML views(4)