Citation: LAN Ben-Yue, SHI Hai-Feng. Review of Systems for Photocatalytic Conversion of CO2 to Hydrocarbon Fuels[J]. Acta Physico-Chimica Sinica, ;2014, 30(12): 2177-2196. doi: 10.3866/PKU.WHXB201409303
-
Increasing global warming and energy shortage caused by traditional fossil energy combustion to carbon dioxide (CO2) has become a significant global issue in view of humans' continuing development. The photocatalytic reduction of CO2 produced from hydrocarbon fuels using solar light and semiconductor photocatalytic materials could not only decrease the concentration of carbon dioxide in the atmosphere and thus reduce the greenhouse warming effect, but also provide hydrocarbon fuels to partially alleviate the energy shortage crisis. Hence, the photocatalysis technique has attracted considerable attention in industry and academic areas. In this paper, the fundamental principles of heterogeneous photocatalysis and the recent progress in the photocatalytic reduction of CO2 to hydrocarbon fuels are introduced and reviewed. Based on previous reports in the field of photocatalysis research, the main types of semiconductors capable of photocatalytic reduction of carbon dioxide can be summarized as follows: pure TiO2 photocatalysts, ABO3 perovskite-structured photocatalysts, spinel-structured photocatalysts, doped oxide photocatalysts, composite semiconductor photocatalysts, V-, W-, Ge-, Ga-based photocatalysts, and graphene-based photocatalysts. In addition, the characteristics of various photocatalytic materials and some factors affecting photocatalytic activities are reviewed and analyzed. Finally, the prospects and challenges for developing new photocatalysts for CO2 reduction are presented.
-
Keywords:
-
Photocatalyst
, - Semiconductor,
- Carbon dioxide,
- Reduction,
- TiO2
-
-
-
[1]
(1) Halmann, M. Nature 1978, 275, 115. doi: 10.1038/275115a0
-
[2]
(2) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature 1979, 277, 637. doi: 10.1038/277637a0
-
[3]
(3) Lo, C. C.; Hung, C. H.; Yuan, C. S.;Wu, J. F. Sol. Energy Mater. Sol. Cells 2007, 91, 1765. doi: 10.1016/j.solmat.2007.06.003
-
[4]
(4) Li, G.; Ciston, S.; Saponjic, Z. V.; Chen, L.; Dimitrijevic, N. M.; Rajh, T.; Gray, K. A. J. Catal. 2008, 253, 105. doi: 10.1016/j.jcat.2007.10.014
-
[5]
(5) Ko?í, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacný, Z.; Jirkovský, J.; olcová, O. Appl. Catal. B: Environ. 2009, 89, 494. doi: 10.1016/j.apcatb.2009.01.010
-
[6]
(6) Chen, L.; Graham, M. E.; Li, G.; Gentner, D. R.; Dimitrijevic, N. M.; Gray, K. A. Thin Solid Films 2009, 517, 5641. doi: 10.1016/j.tsf.2009.02.075
-
[7]
(7) Schulte, K. L.; DeSario, P. A.; Gray, K. A. Appl. Catal. B: Environ. 2010, 97, 354. doi: 10.1016/j.apcatb.2010.04.017
-
[8]
(8) Wang, P. Q.; Bai, Y.; Liu, J. Y.; Fan, Z.; Hu, Y. Q. Catal. Commun. 2012, 29, 185. doi: 10.1016/j.catcom.2012.10.010
-
[9]
(9) Truong, Q. D.; Le, T. H.; Liu, J.; Chung, C.; Ling, Y. Appl. Catal. A: Gen. 2012, 437, 28.
-
[10]
(10) Pathak, P.; Meziani, M. J.; Li, Y.; Cureton, L. T.; Sun, Y. P. Chem. Commun. 2004, 1234.
-
[11]
(11) Tseng, I. H.;Wu, J. C. S. Catal. Today 2004, 97, 113. doi: 10.1016/j.cattod.2004.03.063
-
[12]
(12) Zhang, Q. H.; Han,W. D.; Hong, Y. J.; Yu, J. G. Catal. Today 2009, 148, 335. doi: 10.1016/j.cattod.2009.07.081
-
[13]
(13) Yui, T.; Kan, A.; Saitoh, C.; Koike, K.; Ibusuki, T.; Ishitani, O. ACS Appl. Mater. Interfaces 2011, 3, 2594. doi: 10.1021/am200425y
-
[14]
(14) Hou,W. B.; Hung,W. H.; Pavaskar, P.; eppert, A.; Aykol, M.; Cronin, S. B. ACS Catal. 2011, 1, 929.
-
[15]
(15) Ola, O.; Liu, D.; Mackintosh, S. Appl. Catal. B: Environ. 2012, 126, 172. doi: 10.1016/j.apcatb.2012.07.024
-
[16]
(16) Qin, S. Y.; Xin, F.; Liu, Y. D.; Yin, X. H.; Ma,W. J. Colloid Interface Sci. 2011, 356, 257. doi: 10.1016/j.jcis.2010.12.034
-
[17]
(17) Tan, J. Z. Y.; Fernández, Y.; Liu, D.; Maroto-Valer, M.; Bian, J. C.; Zhang, X.W. Chem. Phys. Lett. 2012, 531, 149. doi: 10.1016/j.cplett.2012.02.016
-
[18]
(18) Liu, D.; Fernández, Y.; Ola, O.; Mackintosh, S.; Maroto-Valer, M.; Parlett, C. M. A.; Lee, A. F.;Wu, J. C. S. Catal. Commun. 2012, 25, 78. doi: 10.1016/j.catcom.2012.03.025
-
[19]
(19) Wang,W. N.; An,W. J.; Ramalingam, B.; Mukherjee, S.; Niedzwiedzki, D. M.; Gan padhyay, S.; Biswas, P. J. Am. Chem. Soc. 2012, 134, 11276. doi: 10.1021/ja304075b
-
[20]
(20) Xie, S. J.;Wang, Y.; Zhang, Q. H.; Fan,W. Q.; Deng,W. P.; Wang, Y. Chem. Commun. 2013, 49, 2451. doi: 10.1039/c3cc00107e
-
[21]
(21) Mao, J.; Ye, L. Q.; Li, K.; Zhang, X. H.; Liu, J. Y.; Peng, T. Y.; Zan, L. Appl. Catal. B: Environ. 2014, 144, 855. doi: 10.1016/j.apcatb.2013.08.027
-
[22]
(22) Yu, D. H.; Liao, S. J.; Jiang, G. D. Ind. Catal. 2003, 11 (6), 48. [余灯华, 廖世军, 江国东. 工业催化, 2003, 11 (6), 48.]
-
[23]
(23) Tang, Y.; Jia, L. S.; Fang,W. P.; Li, Q. B.; Hong, J. Q.; Ye, M. L. Bulletin of the Chinese Ceramic Society 2008, 27 (4), 672. [唐勇, 贾立山, 方维平, 李清彪, 洪金庆, 叶美玲. 硅酸盐通报, 2008, 27 (4), 672.]
-
[24]
(24) Jia, L. S.; Li, J. J.; Fang,W. P. Catal. Commun. 2009, 11, 87. doi: 10.1016/j.catcom.2009.08.016
-
[25]
(25) Teramura, K.; Okuoka, S.; Tsuneoka, H.; Shishido, T.; Tanaka, T. Appl. Catal. B: Environ. 2010, 96, 565. doi: 10.1016/j.apcatb.2010.03.021
-
[26]
(26) Shi, H. F.;Wang, T. Z.; Chen, J.; Zhu, C.; Ye, J. H.; Zou, Z. G. Catal. Lett. 2011, 141, 525. doi: 10.1007/s10562-010-0482-1
-
[27]
(27) Shi, H. F.; Zou, Z. G. J. Phys. Chem. Solids 2012, 73, 788. doi: 10.1016/j.jpcs.2012.01.026
-
[28]
(28) Li, P.; Quyang, S. X.; Xi, G. C.; Kako, T.; Ye, J. H. J. Phys. Chem. C 2012, 116, 7621. doi: 10.1021/jp210106b
-
[29]
(29) Li, P.; Ouyang, S.; Zhang, Y.; Kako, T.; Ye, J. J. Mater. Chem. A 2013, 1, 1185. doi: 10.1039/c2ta00260d
-
[30]
(30) Yin, X. H.; Dong, H. Z.; Li, H. L.; Qin, S. Y.; Sui, D. D. Chemical Research and Application 2012, 24 (7), 1041. [尹晓红, 董虹志, 李会亮, 秦士跃, 隋丹丹. 化学研究与应用, 2012, 24 (7), 1041.]
-
[31]
(31) Sui, D. D.; Yin, X. H.; Dong, H. Z.; Qin, S. Y.; Chen, J. S.; Jiang,W. L. Catal. Lett. 2012, 142, 1202. doi: 10.1007/s10562-012-0876-3
-
[32]
(32) Li, H. L. Preparation of Pervoskite Oxides and Their Performances in Photocatalytic Reduction of CO2 to Methyl Formate. Master Dissertation, Tianjin University of Technology, Tianjin, 2012. [李会亮. 钙钛矿型复合金属氧化物制备及光催化还原CO2 为有机酯的性能研究[D]. 天津: 天津理工大学, 2012.]
-
[33]
(33) Matsumoto, Y.; Obata, M.; Hombo, J. J. Phys. Chem. 1994, 98, 2950. doi: 10.1021/j100062a035
-
[34]
(34) Yan, S. C.; Ouyang, S. X.; Gao, J.; Yang, M.; Feng, J. Y.; Fan, X. X.;Wan, L. J.; Li, Z. S.; Ye, J. H.; Zhou, Y.; Zou, Z. G. Angew. Chem. Int. Edit. 2010, 49, 6400. doi: 10.1002/anie.201003270
-
[35]
(35) Xu, P. C.; Xue, L. M.; Sun, Y.;Wu, L. H.; Hu, P. Guangzhou Chemical Industry 2010, 38 (5), 150. [许普查, 薛丽梅, 孙杨, 吴灵慧, 胡佩. 广州化工, 2010, 38 (5), 150.]
-
[36]
(36) Xue, L. M.; Chen, B.; Zhang, F. H. Journal of Heilongjiang Institute of Science and Technology 2012, 22 (3), 256. [薛丽梅, 陈彬, 张风华. 黑龙江科技学院学报, 2012, 22 (3), 256.]
-
[37]
(37) Xu, Y. J.; Xu, P. C. Chemical Engineering & Equipment 2012, 6, 10. [徐迎节, 许普查. 化学工程与装备, 2012, 6, 10.]
-
[38]
(38) Guo, L. M.; Kuang, Y. J.; Yang, X. D.; Yu, Y. L.; Yao, J. H.; Cao, Y. A. Acta Phys. -Chim. Sin. 2013, 29 (2), 397. [郭丽梅, 匡元江, 杨晓丹, 于彦龙, 姚江宏, 曹亚安. 物理化学学报, 2013, 29 (2), 397.] doi: 10.3866/PKU.WHXB201211161
-
[39]
(39) Guo, L. M.; Kuang, Y. J.; Yang, X. D.; Yu, Y. L.; Yao, J. H.; Cao, Y. A. Acta Phys. -Chim. Sin. 2013, 29 (7), 1558. [郭丽梅, 匡元江, 杨晓丹, 于彦龙, 姚江宏, 曹亚安. 物理化学学报, 2013, 29 (7), 1558.] doi: 10.3866/PKU.WHXB201304161
-
[40]
(40) Yan, S. C.;Wang, J. J.;Wang, N. Y.; Yu, H.; Li, Z. S.; Zhou, Y.; Zou, Z. G. Adv. Funct. Mater. 2013, 23, 758. doi: 10.1002/adfm.v23.6
-
[41]
(41) Zahng, C. Z. The Preparation and Photocatalytic Reduction of CO2 with H2O of CdS/TiO2 Photocatalyst. Master Dissertation, Shanghai Jiao Tong University, Shanghai, 2012. [张传照. CdS/TiO2 的制备及其光催化转化CO2-H2O 的性能研究[D]. 上海: 上海交通大学, 2012.]
-
[42]
(42) Slamet; Nasution, H.W.; Purnama, E.; Kosela, S.; Gunlazuardi, J. Catal. Commun. 2005, 6, 313.
-
[43]
(43) Fan, J.; Liu, E. Z.; Zeng, B.; Hu, X. Y.; Chen, G. L.; Yuan, J. J. Petrochemical Technology 2009, 38 (7), 789. [樊君, 刘恩周, 曾波, 胡晓云, 陈国亮, 原俊杰. 石油化工, 2009, 38 (7), 789.]
-
[44]
(44) Chao, X. Y.; Zhang, N. Environ. Chem. 2010, 29 (3), 481. [晁显玉, 张宁. 环境化学, 2010, 29 (3), 481.]
-
[45]
(45) Ko?í, K.; Matěj?, K.; Obalová, L.; Krej?íková, S.; Lacný, Z.; Plachá, D.; ?apek, L.; Hospodková, A.; Šolcová, O. Appl. Catal. B: Environ. 2010, 96, 239. doi: 10.1016/j.apcatb.2010.02.030
-
[46]
(46) Ko?í, K.; Zatloukalová, K.; Obalová, L.; Krej?íková, S.; Lacný, Z.; ?apek, L. Chin. J. Catal. 2011, 32, 812. doi: 10.1016/S1872-2067(10)60199-4
-
[47]
(47) Krej?íková, S.; Matějová, L.; Ko?í, K.; Obalová, L.; Matěj, Z.; ?apek, L.; Šolcová, O. Appl. Catal. B: Environ. 2012, 111 -112, 119.
-
[48]
(48) Li, H. L.; Yin, X. H. New Chemical Materials 2012, 40 (8), 79. [李会亮, 尹晓红. 化工新型材料, 2012, 40 (8), 79.]
-
[49]
(49) Manzanares, M.; Fàbrega, C.; Ossó, J. O.; Vega, L. F.; Andreu, T.; Morante, J. R. Appl. Catal. B: Environ. 2014, 150 -151, 57.
-
[50]
(50) Wang, Y. G.;Wang, F.; Chen, Y. T.; Zhang, D. F.; Li, B.; Kang, S. F.; Li, X.; Cui, L. F. Appl. Catal. B: Environ. 2014, 147, 602. doi: 10.1016/j.apcatb.2013.09.036
-
[51]
(51) Fujishima, A.; Zhang, X. T.; Tryk, D. A. Surf. Sci. Rep. 2008, 63 (12), 515. doi: 10.1016/j.surfrep.2008.10.001
-
[52]
(52) Hussain, S. T.; Khan, K.; Hussain, R. J. Nat. Gas Chem. 2009, 18, 383. doi: 10.1016/S1003-9953(08)60133-4
-
[53]
(53) Zhang, Q. Y.; Li, Y.; Ackerman, E. A.; Gajdardziska-Josifovska, M.; Li, H. L. Appl. Catal. A: Gen. 2011, 400, 195. doi: 10.1016/j.apcata.2011.04.032
-
[54]
(54) Tsai, C.W.; Chen, H. M.; Liu, R. S.; Asakura, K.; Chan, T. S. J. Phys. Chem. C 2011, 115, 10180. doi: 10.1021/jp2020534
-
[55]
(55) Xue, L. M.; Bai, X. F.; Zhang, F. H. Minning and Metallurgical Engineering 2012, 31 (1), 84. [薛丽梅, 白雪峰, 张风华. 矿冶工程, 2012, 31 (1), 84.]
-
[56]
(56) Zhao, Z. H.; Fan, J. M.;Wang, J. Y.; Li, R. F. Catal. Commun. 2012, 21, 32. doi: 10.1016/j.catcom.2012.01.022
-
[57]
(57) Suzuki, T. M.; Nakamura, T.; Saeki, S.; Matsuoka, Y.; Tanaka, H.; Yano, K.; Kajino, T.; Morikawa, T. J. Mater. Chem. 2012, 22, 24584. doi: 10.1039/c2jm33980c
-
[58]
(58) Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A. Nano Lett. 2009, 9, 731. doi: 10.1021/nl803258p
-
[59]
(59) Li, X. K.; Zhuang, Z. J.; Li,W.; Pan, H. Q. Appl. Catal. A: Gen. 2012, 429 -430, 31.
-
[60]
(60) Zhang, Q. Y.; Gao, T. T.; Andino, J. M.; Li, Y. Appl. Catal. B: Environ. 2012, 123 -124, 257.
-
[61]
(61) Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Chem. Rev. 1995, 95, 735. doi: 10.1021/cr00035a013
-
[62]
(62) Yu, L. S. Physics of Semiconductor heterojunction, 2nd ed.; Science Press: Beijing, 2006. [虞丽生. 半导体异质结物理,第2 版. 北京: 科学出版社, 2006.]
-
[63]
(63) Guan, G. Q.; Kida, T.; Harada, T.; Isayama, M.; Yoshida, A. Appl. Catal. A: Gen. 2003, 249, 11. doi: 10.1016/S0926-860X(03)00205-9
-
[64]
(64) Pan, P.W.; Chen, Y.W. Catal. Commun. 2007, 8, 1546. doi: 10.1016/j.catcom.2007.01.006
-
[65]
(65) Shi, D. X.; Feng, Y. Q.; Zhong, S. H. Catal. Today 2004, 98, 505. doi: 10.1016/j.cattod.2004.09.004
-
[66]
(66) Nguyen, T. V.;Wu, J. C. S. Sol. Energy Mater. Sol. Cells 2008, 92, 864. doi: 10.1016/j.solmat.2008.02.010
-
[67]
(67) Li, Y.;Wang,W. N.; Zhan, Z. L.;Woo, M. H.;Wu, C. Y.; Biswas, P. Appl. Catal. B: Environ. 2010, 100, 386. doi: 10.1016/j.apcatb.2010.08.015
-
[68]
(68) Wang, C. J.; Thompson, R. L.; Baltrus, J.; Matranga, C. J. Phys. Chem. Lett. 2010, 1, 48. doi: 10.1021/jz9000032
-
[69]
(69) Xi, G. C.; Ouyang, S. X.; Ye, J. H. Chem. -Eur. J. 2011, 17, 9057. doi: 10.1002/chem.v17.33
-
[70]
(70) Asi, M. A.; He, C.; Su, M. H.; Xia, D. H.; Lin, L.; Deng, H. Q.; Xiong, Y.; Qiu, R. L.; Li, X. Z. Catal. Today 2011, 175, 256. doi: 10.1016/j.cattod.2011.02.055
-
[71]
(71) Li, H. L.; Lei, Y. G.; Huang, Y.; Fang, Y. P.; Xu, Y. H.; Zhu, L.; Li, X. J. Nat. Gas Chem. 2011, 20, 145. doi: 10.1016/S1003-9953(10)60166-1
-
[72]
(72) Yuan, Y. P.; Cao, S.W.; Liao, Y. S.; Yin, L. S.; Xue, C. Appl. Catal. B: Environ. 2013, 140 -141, 164.
-
[73]
(73) Cao, S.W.; Liu, X. F.; Yuan, Y. P.; Zhang, Z. Y.; Liao, Y. S.; Fang, J.; Loo, S. C. J.; Sum, T. C.; Xue, C. Appl. Catal. B: Environ. 2014, 147, 940. doi: 10.1016/j.apcatb.2013.10.029
-
[74]
(74) Li, X.; Liu, H. L.; Luo, D. L.; Li, J. T.; Huang, Y.; Li, H. L.; Fang, Y. P.; Xu, Y. H.; Zhu, L. Chem. Eng. J. 2012, 180, 151. doi: 10.1016/j.cej.2011.11.029
-
[75]
(75) Song, G. X.; Xin, F.; Chen, J. S.; Yin, X. H. Appl. Catal. A: Gen. 2014, 473, 90. doi: 10.1016/j.apcata.2013.12.035
-
[76]
(76) Truong, Q. D.; Liu, J. Y.; Chung, C. C.; Ling, Y. C. Catal. Commun. 2012, 19, 85. doi: 10.1016/j.catcom.2011.12.025
-
[77]
(77) Zhang, J. L.; Minagawa, M.; Ayusawa, T.; Natarajan, S.; Yamashita, H.; Matsuoka, M.; Anpo, M. J. Phys. Chem. B 2000, 104 (48), 11501. doi: 10.1021/jp002513y
-
[78]
(78) Anpo, M.; Yamashita, H.; Ikeue, K.; Fujii, Y.; Zhang, S. G.; Ichihashi, Y.; Park, D. R.; Suzuki, Y.; Koyano, K.; Tatsumi, T. Catal. Today 1998, 44, 327. doi: 10.1016/S0920-5861(98)00206-5
-
[79]
(79) Lin,W. Y.; Han, H. X.; Frei, H. J. Phys. Chem. B 2004, 108, 18269. doi: 10.1021/jp040345u
-
[80]
(80) Hwang, J. S.; Chang, J. S.; Park, S. E.; Ikeue, K.; Anpo, M. Top. Catal. 2005, 35 (3-4), 311. doi: 10.1007/s11244-005-3839-8
-
[81]
(81) Yamashita, H.; Fujii, Y.; Ichihashi, Y.; Zhang, S. G.; Ikeue, K.; Park, D. R.; Koyano, K.; Tatsumi, T.; Anpo, M. Catal. Today 1998, 45, 221. doi: 10.1016/S0920-5861(98)00219-3
-
[82]
(82) Ikeue, K.; Yamashita, H.; Anpo, M. J. Phys. Chem. B 2001, 105, 8350. doi: 10.1021/jp010885g
-
[83]
(83) Yang, H. C.; Lin, H. Y.; Chien, Y. S.;Wu, J. C. S.;Wu, H. H. Catal. Lett. 2009, 131, 381. doi: 10.1007/s10562-009-0076-y
-
[84]
(84) Tahir, M.; Amin, N. S. Appl. Catal. B: Environ. 2013, 142 -143, 512.
-
[85]
(85) Hou,W. Q.; Liu, E. Z.; Yang, B. Y.; Fan, J.; Hu, X. Y. Chem. Ind. Eng. Prog. 2011, 30, 270. [侯文倩, 刘恩周, 杨彬亚,樊君, 胡晓云. 化工进展, 2011, 30, 270.]
-
[86]
(86) Liu, E. Z. Research on Photocatalytic Reduction of CO2 over Nano-TiO2 Modified by Rare earth Free Upcoversion Luminescent Muterial under Visible Light Irraliation. Ph. D. Dissertation, Northwest University, Xi'an, 2012. [刘恩周. 非稀土上转换发光材料改性纳米TiO2可见光催化还原CO2研究[D]. 西安: 西北大学, 2012.]
-
[87]
(87) Zhao, Z. H.; Fan, J. M.; Xie, M. M.;Wang, Z. Z. J. Clean. Prod. 2009, 17, 1025. doi: 10.1016/j.jclepro.2009.02.016
-
[88]
(88) Wang, Q.;Wu,W.; Chen, J. F.; Chu, G.W.; Ma, K.; Zou, H. K. Colloids Surf. A Physicochem. Eng. Asp. 2012, 409, 118. doi: 10.1016/j.colsurfa.2012.06.010
-
[89]
(89) Wang, Y. G.; Li, B.; Zhang, C. L.; Cui, L. F.; Kang, S. F.; Li, X.; Zhou, L. H. Appl. Catal. B: Environ. 2013, 130 -131, 277.
-
[90]
(90) Ong,W. J.; Gui, M. M.; Chai, S. P.; Mohamed, A. R. RSC Adv. 2013, 3, 4505. doi: 10.1039/c3ra00030c
-
[91]
(91) Ko?í, K.; Matějová, L.; Reli, M.; ?apek, L.; Matějka, V.; Lacný, Z.; Kustrowski, P.; Obalová, L. Catal. Today 2014, 230, 20. doi: 10.1016/j.cattod.2013.10.002
-
[92]
(92) Shi, H. F.; Chen, G. Q.; Zhang, C. L.; Zou, Z. G. ACS Catal. 2014, 4, 3637.
-
[93]
(93) Liu, Y. Y.; Huang, B. B.; Dai, Y.; Zhang, X. Y.; Qin, X. Y.; Jiang, M. H.; Whangbo, M. H. Catal. Commun. 2009, 11, 210. doi: 10.1016/j.catcom.2009.10.010
-
[94]
(94) Mao, J.; Peng, T. Y.; Zhang, X. H.; Li, K.; Zan, L. Catal. Commun. 2012, 28, 38. doi: 10.1016/j.catcom.2012.08.008
-
[95]
(95) Li, P.; Zhou, Y.; Tu,W. G.; Liu, Q.; Yan, S. C.; Zou, Z. G. ChemPlusChem 2013, 78, 274. doi: 10.1002/cplu.201200289
-
[96]
(96) Zhou, Y.; Tian, Z. P.; Zhao, Z. Y.; Liu, Q.; Kou, J. H.; Chen, X. Y.; Gao, J.; Yan, S. C.; Zou, Z. G. ACS Appl. Mater. Inter. 2011, 3, 3594. doi: 10.1021/am2008147
-
[97]
(97) Chen, X. Y.; Zhou, Y.; Liu, Q.; Li, Z. D.; Liu, J. G.; Zou, Z. G. ACS Appl. Mater. Inter. 2012, 4, 3372. doi: 10.1021/am300661s
-
[98]
(98) Cheng, H. F.; Huang, B. B.; Liu, Y. Y.;Wang, Z. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Chem. Commun. 2012, 48, 9729. doi: 10.1039/c2cc35289c
-
[99]
(99) Xi, G. C.; Ouyang, S. X.; Li, P.; Ye, J. H.; Ma, Q.; Su, N.; Bai, H.;Wang, C. Angew. Chem. 2012, 124, 2445. doi: 10.1002/ange.v124.10
-
[100]
(100) Park, H. A.; Choi, J. H.; Choi, K. M.; Lee, D. K.; Kang, J. K. J. Mater. Chem. 2012, 22, 5304. doi: 10.1039/c2jm30337j
-
[101]
(101) Liu, Q.; Zhou, Y.; Kou, J. H.; Chen, X. Y.; Tian, Z. P.; Gao, J.; Yan, S. C.; Zou, Z. G. J. Am. Chem. Soc. 2010, 132, 14385. doi: 10.1021/ja1068596
-
[102]
(102) Liu, Q.; Zhou, Y.; Ma, Y.; Zou, Z. G. RSC Adv. 2012, 2, 3247. doi: 10.1039/c2ra20186k
-
[103]
(103) Liu, Q.; Zhou, Y.; Tian, Z. P.; Chen, X. Y.; Gao, J.; Zou, Z. G. J. Mater. Chem. 2012, 22, 2033. doi: 10.1039/c1jm14122h
-
[104]
(104) Yan, S. C.; Yu, H.;Wang, N. Y.; Li, Z. S.; Zou, Z. G. Chem. Commun. 2012, 48, 1048. doi: 10.1039/c1cc16185g
-
[105]
(105) Yan, S. C.;Wang, J. J.; Gao, H. L.;Wang, N. Y.; Yu, H.; Li, Z. S.; Zhou, Y.; Zou, Z. G. Adv. Funct. Mater. 2013, 23, 1839. doi: 10.1002/adfm.v23.14
-
[106]
(106) Li, X.; Chen, J. T.; Li, H. L.; Li, J. T.; Xu, Y. T.; Liu, Y. J.; Zhou, J. R. J. Nat. Gas Chem. 2011, 20, 413. doi: 10.1016/S1003-9953(10)60212-5
-
[107]
(107) Chen, J. S.; Xin, F.; Qin, S. Y.; Yin, X. H. Chem. Eng. J. 2013, 230, 506. doi: 10.1016/j.cej.2013.06.119
-
[108]
(108) Jiang,W. L.; Yin, X. H.; Xin, F.; Bi, Y. D.; Liu, Y.; Li, X. Appl. Surf. Sci. 2014, 288, 138. doi: 10.1016/j.apsusc.2013.09.165
-
[109]
(109) Liang, Y. T.; Vijayan, B. K.; Gray, K. A.; Hersam, M. C. Nano Lett. 2011, 11, 2865. doi: 10.1021/nl2012906
-
[110]
(110) Tu,W. G.; Zhou, Y.; Gao, J.; Liu, Q.; Tian, Z. P.; Zhang, H. T.; Liu, J. G.; Zou, Z. G. Adv. Funct. Mater. 2012, 22, 1215. doi: 10.1002/adfm.v22.6
-
[111]
(111) Tu,W. G.; Zhou, Y.; Liu, Q.; Yan, S. C.; Bao, S. S.;Wang, X. Y.; Xiao, M.; Zou, Z. G. Adv. Funct. Mater. 2013, 23, 1743. doi: 10.1002/adfm.v23.14
-
[112]
(112) Baeissa, E. S. Ceram. Int. 2014, 40, 12431. doi: 10.1016/j.ceramint.2014.04.094
-
[113]
(113) Hsu, H. C.; Shown, I.;Wei, H. Y.; Chang, Y. C.; Du, H. Y.; Lin, Y. G.; Tseng, C. A.;Wang, C. H.; Chen, L. C.; Lin, Y. C.; Chen, K. H. Nanoscale 2013, 5, 262. doi: 10.1039/c2nr31718d
-
[114]
(114) Kumar, P.; Kumar, A.; Sreedhar, B.; Sain, B.; Ray, S. S.; Jain, S. L. Chem. Eur. J. 2014, 20, 6154. doi: 10.1002/chem.201304189
-
[115]
(115) Kumar, P.; Sain, B.; Jain, S. L. J. Mater. Chem. A 2014, 2, 11246. doi: 10.1039/c4ta01494d
-
[116]
(116) Lv, X. J.; Fu,W. F.; Hu, C. Y.; Chen, Y.; Zhou,W. B. RSC Adv. 2013, 3, 1753. doi: 10.1039/c2ra21283h
-
[117]
(117) Li, X. S.;Wang, Q.; Zhao, Y. B.;Wu,W.; Chen, J. F.; Meng, H. J. Colloid Interface Sci. 2013, 411, 69. doi: 10.1016/j.jcis.2013.08.050
-
[118]
(118) Tan, L. L.; Ong,W. J.; Chai, S. P.; Mohamed, A. R. Nanoscale Res. Lett. 2013, 8, 465. doi: 10.1186/1556-276X-8-465
-
[119]
(119) Wang, A.; Li, X. S.; Zhao, Y. B.;Wu,W.; Chen, J. F.; Meng, H. Powder Technol. 2014, 261, 42. doi: 10.1016/j.powtec.2014.04.004
-
[120]
(120) An, X. Q.; Li, K. F.; Tang, J.W. ChemSusChem 2014, 7, 1086. doi: 10.1002/cssc.201301194
-
[121]
(121) Yu, J. G.; Jin, J.; Cheng, B.; Jaroniec, M. J. Mater. Chem. A 2014, 2, 3407.
-
[1]
-
-
[1]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[2]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[3]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[4]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[5]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[6]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[7]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[8]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[9]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[10]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[11]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[12]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[13]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[14]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[15]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[16]
Hui Shi , Shuangyan Huan , Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042
-
[17]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[18]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[19]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[20]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[1]
Metrics
- PDF Downloads(1537)
- Abstract views(1536)
- HTML views(57)