Citation: ZHOU Xia-Yu, RONG Chun-Ying, LU Tian, LIU Shu-Bin. Hirshfeld Charge as a Quantitative Measure of Electrophilicity and Nucleophilicity: Nitrogen-Containing Systems[J]. Acta Physico-Chimica Sinica, ;2014, 30(11): 2055-2062. doi: 10.3866/PKU.WHXB201409193 shu

Hirshfeld Charge as a Quantitative Measure of Electrophilicity and Nucleophilicity: Nitrogen-Containing Systems

  • Received Date: 7 August 2014
    Available Online: 19 September 2014

    Fund Project: 湖南省高校科技创新团队支持计划(湘教通[2012]318 号) (湘教通[2012]318 号) 湖南省自然科学基金(12JJ2029) (12JJ2029) 湖南省高校创新平台开放基金(12K030) (12K030) 常德市科技局重点项目(2014JF15) (2014JF15)湖南省省级科技计划项目(2013FJ4220)资助 (2013FJ4220)

  • To accurately predict the capability and possible reaction site for atoms in molecules to donate or accept electrons in chemical processes, i.e., to quantitatively determine electrophilicity, nucleophilicity, and regioselectivity, is an important yet incomplete task. Earlier, we proposed using the Hirshfeld charge and information gain as two equivalent descriptors for this purpose, based on the Information Conservation Principle we recently proposed. This idea was successfully applied to two series of molecular systems to confirm its validity. However, our previous work is hindered by the fact that the involved element is carbon. It is unclear if stockit applies to other elements and to different valence states of the same element. In this study, to address these issues, the method was applied to nitrogen-containing systems. Five different cate ries of compounds were studied, including benzenediazonium, azodicarboxylate, diazo, and primary and secondary amines, with a total of 40 molecules. The results show that there are strong linear correlations between the Hirshfeld charge and their experimental scales of electrophilicity and nucleophilicity. However, these correlations depend on the valence state and bonding environment of the nitrogen element. The linear relationship only holds within the same cate ry. Possible reasons for this observation are discussed.

  • 加载中
    1. [1]

      (1) March, J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure;Wiley: New York, USA, 1985.

    2. [2]

      (2) Swain, C. G.; Scott, C. B. J. Am. Chem. Soc. 1953, 75, 141. doi: 10.1021/ja01097a041

    3. [3]

      (3) Ritchie, C. D. Accounts Chem. Res. 1972, 5, 348. doi: 10.1021/ar50058a005

    4. [4]

      (4) Mayr, H.; Patz, M. Angew. Chem. Int. Edit. 1994, 33, 938.

    5. [5]

      (5) Parr, R. G.; Yang,W. Density-Functional Theory of Atoms and Molecules. In International Series of Monographs on Chemistry; Clarendon Press: Oxford, England, 1989.

    6. [6]

      (6) Geerlings, P.; DeProft, F.; Langenaeker,W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p

    7. [7]

      (7) Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065. doi: 10.1021/cr040109f

    8. [8]

      (8) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报, 2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332

    9. [9]

      (9) Parr, R. G.; Yang,W. J. Am. Chem. Soc. 1984, 106, 4049. doi: 10.1021/ja00326a036

    10. [10]

      (10) Parr, R. G.; von Szentpaly, L.; Liu, S. B. J. Am. Chem. Soc. 1999, 121, 1922. doi: 10.1021/ja983494x

    11. [11]

      (11) Jaramillo, P.; Perez, P.; Contreras, R.; Tiznado,W.; Fuentealba, P. J. Phys. Chem. A 2006, 110, 8181. doi: 10.1021/jp057351q

    12. [12]

      (12) Ayers, P.W.; Anderson, J. S. M.; Rodriguez, J. I.; Jawed, Z. Phys. Chem. Chem. Phys. 2005, 7, 1918. doi: 10.1039/b500996k

    13. [13]

      (13) Morell, C.; Grand, A.; Toro-Labbe, A. J. Phys. Chem. A 2005, 109, 205. doi: 10.1021/jp046577a

    14. [14]

      (14) Ayers, P.W.; Morell, C.; De Proft, D.; Geerlings, P. Chem. Eur. J. 2007, 13, 8240.

    15. [15]

      (15) Liu, S. B.; Ess, D. H.; Schauer, C. K. J. Phys. Chem. A 2011, 115, 4738. doi: 10.1021/jp112319d

    16. [16]

      (16) Kumar, N.; Liu, S. B.; Kozlowski, P. M. J. Phys. Chem. Lett. 2012, 3, 1035.

    17. [17]

      (17) Markownikoff,W. Ann. Pharm. (Lem , Ger.) 1870, 153, 228.

    18. [18]

      (18) Baldwin, J. E. J. Chem. Soc. Chem. Commun. 1976, 1976, 734.

    19. [19]

      (19) Fürst, A.; Plattner, P. A. Helv. Chim. Acta 1949, 32, 275.

    20. [20]

      (20) Liu, S. B.; Rong, C. Y.; Lu, T. J. Phys. Chem. A 2014, 118, 3698. doi: 10.1021/jp5032702

    21. [21]

      (21) Hirshfeld, F. Theor. Chim. Acc. 1977, 44, 129. doi: 10.1007/BF00549096

    22. [22]

      (22) Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379. doi: 10.1002/bltj.1948.27.issue-3

    23. [23]

      (23) Liu, S. B. J. Chem. Phys. 2007, 126, 191107. doi: 10.1063/1.2741244

    24. [24]

      (24) Kullback, S.; Leibler, R.A. Ann. Math. Stat. 1951, 22, 79.

    25. [25]

      (25) Bader, R. F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, England, 1990.

    26. [26]

      (26) Rong, C. Y.; Lu, T.; Liu, S. B. J. Chem. Phys. 2014, 140, 024109. doi: 10.1063/1.4860969

    27. [27]

      (27) Lu, T.; Chen, F.WActa Phys. -Chim. Sin. 2012, 28, 1. [卢天, 陈正武. 物理化学学报, 2012, 28, 1.] doi: 10.3866/PKU.WHXB2012281

    28. [28]

      (28) Nalewajski, R. F.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 8879. doi: 10.1073/pnas.97.16.8879

    29. [29]

      (29) Nalewajski, R. F.; Parr, R. G. J. Phys. Chem. A 2001, 105, 7391. doi: 10.1021/jp004414q

    30. [30]

      (30) Parr, R. G.; Ayers, P.W.; Nalewajski, R. F. J. Phys. Chem. A 2005, 109, 3957. doi: 10.1021/jp0404596

    31. [31]

      (31) Ayers, P.W. Theor. Chem. Acc. 2006, 115, 370. doi: 10.1007/s00214-006-0121-5

    32. [32]

      (32) Mayr, H.; Bug, T.; tta, M. F.; Hering, N.; Irrgang, B.; Janker, B.; Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; Schimmel, H. J. Am. Chem. Soc. 2001, 123, 9500. doi: 10.1021/ja010890y

    33. [33]

      (33) Lucius, R.; Loos, R.; Mayr, H. Angew. Chem. Int. Edit. 2002, 41, 91. doi: 10.1002/1521-3773(20020104)41:1<>1.0.CO;2-5

    34. [34]

      (34) Mayr, H.; Kempf, B.; Ofial, A. R. Accounts Chem. Res. 2003, 36, 66. doi: 10.1021/ar020094c

    35. [35]

      (35) (a) Pérez, P. J. Org. Chem. 2003, 68, 5886.(b) Mayr, H.; Hartnagel, M.; Grimm, K. Liebigs Ann. /Recl.1997, 55.

    36. [36]

      (36) Kanzian, T.; Mayr, H. Chem. Eur. J. 2010, 16, 11670. doi: 10.1002/chem.v16:38

    37. [37]

      (37) Bug, T.; Hartnagel, M.; Schlierf, C.; Mayr, H. Chem. Eur. J. 2003, 9, 4068.

    38. [38]

      (38) Brotzel, F.; Chu, Y. C.; Mayr, H. J. Org. Chem. 2007, 72, 3679. doi: 10.1021/jo062586z

    39. [39]

      (39) Ditchfield, R.; Hehre,W. J.; Pople, J. J. Chem. Phys. 1971, 54, 724. doi: 10.1063/1.1674902

    40. [40]

      (40) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x

    41. [41]

      (41) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision D.01; Gaussian Inc.:Wallingford, CT, 2009.

    42. [42]

      (42) Cossi, M.; Rega, N.; Scalmani, G.; Baronem, V. J. Comput. Chem. 2003, 24, 669. doi: 10.1002/jcc.10189

    43. [43]

      (43) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.v33.5

    44. [44]

      (44) Liu, S. B. J. Chem. Phys. 2007, 126, 244103. doi: 10.1063/1.2747247

    45. [45]

      (45) Liu, S. B. J. Phys. Chem. A 2013, 117, 962. doi: 10.1021/jp312521z

    46. [46]

      (46) Liu, S. B.; Pedersen, L. G. J. Phys. Chem. A 2009, 113, 3648. doi: 10.1021/jp811250r

    47. [47]

      (47) Liu, S. B.; Schauer, C. K.; Pedersen, L. G. J. Chem. Phys. 2009, 131, 164107. doi: 10.1063/1.3251124

    48. [48]

      (48) Huang, Y.; Liu, L.; Liu,W.; Liu, S. G.; Liu, S. B. J. Phys. Chem. A 2011, 115, 14697. doi: 10.1021/jp209540p

    49. [49]

      (49) Liu, S. B.; Hu, H.; Pedersen, L. G. J. Phys. Chem. A 2010, 114, 5913. doi: 10.1021/jp101329f

    50. [50]

      (50) Huang, Y.; Zhong, A. G.; Yang, Q. S.; Liu, S. B. J. Chem. Phys. 2011, 134, 084103. doi: 10.1063/1.3555760


  • 加载中
    1. [1]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    2. [2]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    5. [5]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    12. [12]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    13. [13]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    14. [14]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    15. [15]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    16. [16]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    17. [17]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    18. [18]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    19. [19]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    20. [20]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

Metrics
  • PDF Downloads(744)
  • Abstract views(1254)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return