Citation: LI Hai-Xia, ZHOU Bao-Chang, LIU Yan-Cheng, TANG Rui-Zhi, ZHANG Peng, LI Jing-Ye, WANG Wen-Feng. Primary Photochemical Properties of Difloxacin in Neutral Aqueous Solution[J]. Acta Physico-Chimica Sinica, ;2014, 30(11): 2134-2141. doi: 10.3866/PKU.WHXB201409161 shu

Primary Photochemical Properties of Difloxacin in Neutral Aqueous Solution

  • Received Date: 10 April 2014
    Available Online: 16 September 2014

    Fund Project: 国家自然科学基金(21173252)资助项目 (21173252)

  • The photochemical properties of difloxacin (DFX) were investigated in neutral aqueous solution. DFX aqueous solution showed intense absorption with one peak at 273 nm (molar absorption coefficient ε= 33000 dm3·mol-1·cm-1) and two other peaks at 323 and 335 nm (ε=15500 dm3·mol-1·cm-1) with the same molar absorption coefficient. Both the absorption and emission properties of DFX were pH-dependent. The acid dissociation constant (pKa) for the protonation equilibria of the ground state (5.9 and 9.8) were determined spectroscopically. DFX fluoresces weakly, and its maximum quantum yield for fluorescence emission was 0.06 at pH 3. Laser flash photolysis and pulse radiolysis studies were carried out to characterize the transient species of DFX aqueous solution. Triplet-triplet absorption reached a maximum at 620 nm with a molar absorption coefficient of 7900 dm3·mol-1·cm-1. The energy transfer method was used to estimate the triplet energy of DFX, which was 263.5 kJ·mol-1. The quantum yield of triplet formation was determined to be 0.21. Furthermore, DFX showed monophotonic photoionization with a quantum yield of 0.02. Pulse radiolysis indicated that DFX could react with eaq- and ·OH, and the bimolecular rate constants for these reactions were 1.72×1010 and 1.0×1010 dm3· mol-1 ·s-1, respectively. It is expected that this research may be helpful in determining the phototoxicity mechanism of DFX.

  • 加载中
    1. [1]

      (1) Condorelli, G.; De Guidi, G.; Giuffrida, S.; Sortino, S.; Chillemi, R.; Sciuto, S. Photochem. Photobiol. 1999, 70, 280.

    2. [2]

      (2) Martinez, L.; Chignell, C. F. J. Photochem. Photobiol. B 1998, 45, 51. doi: 10.1016/S1011-1344(98)00160-2

    3. [3]

      (3) Klecak, G.; Urbach, F.; Urwyler, H. J. Photochem. Photobiol. B 1997, 37, 174. doi: 10.1016/S1011-1344(96)07424-6

    4. [4]

      (4) Martinez, L. J.; Sik, R. H.; Chignell, C. F. Photochem. Photobiol. 1998, 67, 399. doi: 10.1111/php.1998.67.issue-4

    5. [5]

      (5) Jechalke, S.; Focks, A.; Rosendahl, I.; Groeneweg, J.; Siemens, J.; Heuer, H.; Smalla, K. Fems Microbiol. Ecol. 2014, 87, 78. doi: 10.1111/1574-6941.12191

    6. [6]

      (6) Domagala, J. M. J. Antimicrob. Chemoth. 1994, 33, 685. doi: 10.1093/jac/33.4.685

    7. [7]

      (7) Matsumoto, M.; Kojima, K.; Nagano, H.; Matsubara, S.; Yokota, T. Antimicrob. Agents Chemother. 1992, 36, 1715. doi: 10.1128/AAC.36.8.1715

    8. [8]

      (8) Fasani, E.; Profumo, A.; Albini, A. Photochem. Photobiol. 1998, 68, 666. doi: 10.1111/php.1998.68.issue-5

    9. [9]

      (9) Monti, S.; Sortino, S.; Fasani, E.; Albini, A. Chem. Eur. J. 2001, 7, 2185.(10) Li, H. X.; Liu, Y. C.; Tang, R. Z.; Zhang, P.;Wang,W. F. Sci. China Chem. 2012, 55, 1358.

    10. [10]

      (11) Liu, Y. C.; Zhang, P.; Li, H. X.; Tang, R. Z.; Cui, R. R.;Wang, W. J. Photochem. Photobiol. B 2013, 118, 58. doi: 10.1016/j. jphotobiol.2012.11.002

    11. [11]

      (12) Li, H. X.; Zhang, P.; Liu, Y. C.; Tang, R. Z.; Xing, Z. G.; Yao, S. D.; Fu, H. Y.;Wang,W. F. Rad. Phys. Chem. 2012, 81, 40. doi: 10.1016/j.radphyschem.2011.09.005

    12. [12]

      (13) Ismail, M. Vet. Res. Commun. 2007, 31, 467. doi: 10.1007/ s11259-006-3464-4

    13. [13]

      (14) Inui, T.; Taira, T.; Matsushita, T.; Endo, T. Xenobiotica 1998, 28, 887. doi: 10.1080/004982598239128

    14. [14]

      (15) Guo, J. B.; Ostermann, A.; Siemens, J.; Dong, R. J.; Clemens, J. Waste Manage. 2012, 32, 131. doi: 10.1016/j. wasman.2011.07.031

    15. [15]

      (16) Sun, M.; Li, J.; Gai, C. L.; Chang, Z. Q.; Li, J. T.; Zhao, F. Z. J. Vet. Pharmacol. Ther. 2014, 37, 186. doi: 10.1111/ jvp.2014.37.issue-2

    16. [16]

      (17) Drlica, K.; Zhao, X. L. Microbiol. Mol. Biol. Rev. 1997, 61, 377.

    17. [17]

      (18) Walker, R. D. Aust. Vet. J. 2000, 78, 84. doi: 10.1111/j.1751-0813.2000.tb10528.x

    18. [18]

      (19) Cao, H. P.; Zhang, H. X.; He, S.; Zheng,W. D.; Yang, X. L. Isr. J. Aquacult-Bamid 2013, 65, 896.

    19. [19]

      (20) Frazier, D. L.; Thompson, L.; Trettien, A.; Evans, E. I. J. Vet. Pharmacol. Ther. 2000, 23, 293. doi: 10.1046/j.1365-2885.2000.00285.x

    20. [20]

      (21) Atef, M.; El-Banna, H. A.; Abd El-Aty, A. M.; udah, A. Deut. Tierarztl. Woch. 2002, 109, 320.

    21. [21]

      (22) Heinen, E. J. Vet. Pharmacol. Ther. 2002, 25, 1. doi: 10.1046/j.1365-2885.2002.00381.x

    22. [22]

      (23) Abd El-Aty, A. M.; udah, A.; Ismail, M.; Shimoda, M. Vet. Res. Commun. 2005, 29, 297.

    23. [23]

      (24) Adams, A. R.; Haines, G. R.; Brown, M. P.; Gronwall, R.; Merritt, K. Can. J. Vet. Res. 2005, 69, 229.

    24. [24]

      (25) Ding, F. K.; Cao, J. Y.; Ma, L. B.; Pan, Q. S.; Fang, Z. P.; Lu, X. C. Aquaculture 2006, 256, 121.

    25. [25]

      (26) Lian, N.; Zhao, H. C.; Sun, C. Y.; Jin, L. P.; Zhang, Z. L.; Zheng, Y. Z. Chem. J. Chin. Univ. 2002, 23, 564. [连宁, 赵慧春, 孙春燕, 金林培, 张仲伦, 郑雁珍. 高等学校化学学报, 2002, 23, 564.]

    26. [26]

      (27) Zuo, Z. H.; Yao, S. D.; Luo, J. A.;Wang,W. F.; Zhang, J. S.; Lin, N. Y. J. Photochem. Photobiol. B 1992, 15, 215. doi: 10.1016/1011-1344(92)85125-E

    27. [27]

      (28) Yao, S. D.; Sheng, S. G.; Cai, J. H.; Zhang, J. S.; Lin, N. Y. Radiat. Phys. Chem. 1995, 46, 105. doi: 10.1016/0969-806X(94)00120-9

    28. [28]

      (29) Navaratnam, S.; Claridge, J. Photochem. Photobiol. 2000, 72, 283. doi: 10.1562/0031-8655(2000)072<0283:PPPOO>2.0.CO;2

    29. [29]

      (30) Sortino, S.; De Guidi, G.; Giuffrida, S.; Monti, S.; Velardita, A. Photochem. Photobiol. 1998, 67, 167.

    30. [30]

      (31) Lorenzo, F.; Navaratnam, S.; Allen, N. S. J. Am. Chem. Soc. 2008, 130, 12238. doi: 10.1021/ja8044713

    31. [31]

      (32) Lorenzo, F.; Navaratnam, S.; Edge, R.; Allen, N. S. Photochem. Photobiol. 2008, 84, 1118. doi: 10.1111/php.2008.84.issue-5

    32. [32]

      (33) Fasani, E.; Negra, F. F. B.; Mella, M.; Monti, S.; Albini, A. J. Org. Chem. 1999, 64, 5388. doi: 10.1021/jo982456t

    33. [33]

      (34) Zhang, P.; Li, H. X.; Yao, S. D.;Wang,W. F. Sci. China Chem. 2014, 57, 409. doi: 10.1007/s11426-013-4986-6

    34. [34]

      (35) Buxton, G. V.; Greenstock, C. L.; Helman,W. P.; Ross, A. B. J. Phys. Chem. Ref. Data 1988, 17, 513. doi: 10.1063/1.555805

    35. [35]

      (36) Martinez, L. J.; Scaiano, J. C. Photochem. Photobiol. 1998, 68, 646. doi: 10.1111/php.1998.68.issue-5

    36. [36]

      (37) Sandros, K.; Backstrom, H. L. J. Acta Chim. Scand. 1962, 16, 958. doi: 10.3891/acta.chem.scand.16-0958

    37. [37]

      (38) Sandros, K. Acta Chim. Scand. 1964, 18, 2355. doi: 10.3891/acta.chem.scand.18-2355

    38. [38]

      (39) rman, A. A.; Hamblett, I.; Jensen, N. H. Chem. Phys. Lett. 1984, 111, 293. doi: 10.1016/0009-2614(84)85509-8

    39. [39]

      (40) Lhiaubet-Vallet, V.; Cuquerella, M. C.; Castell, J. V.; Bosca, F.; Miranda, M. A. J. Phys. Chem. B 2007, 111, 7409. doi: 10.1021/jp070167f

    40. [40]

      (41) Lorenzo, F.; Navaratnam, S.; Edge, R.; Allen, N. S. Photochem. Photobiol. 2009, 85, 886. doi: 10.1111/php.2009.85.issue-4

    41. [41]

      (42) Monti, S.; Sortino, S. Photochem. Photobiol. Sci. 2002, 1, 877.

    42. [42]

      (43) Bensasson, R. V.; Gramain, J. C. J. Chem. Soc. Faraday Trans. 1980, 76, 1801. doi: 10.1039/f19807601801


  • 加载中
    1. [1]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    2. [2]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    3. [3]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    4. [4]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    9. [9]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    10. [10]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    11. [11]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    12. [12]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    13. [13]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    14. [14]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    17. [17]

      Zhiliang Li . An Overview of Research on the History of Catalysis Science in China. University Chemistry, 2024, 39(7): 398-404. doi: 10.3866/PKU.DXHX202310101

    18. [18]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    19. [19]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    20. [20]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

Metrics
  • PDF Downloads(297)
  • Abstract views(948)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return