Citation: YANG Xiao-Qin, LIU Xue-Jing, LIU Hai-Xiong, YUE Xiao-Ming, CAO Jing-Pei, ZHOU Min. Synergy Effect in Co-Gasification of Lignite and Char of Pine Sawdust[J]. Acta Physico-Chimica Sinica, ;2014, 30(10): 1794-1800. doi: 10.3866/PKU.WHXB201408222 shu

Synergy Effect in Co-Gasification of Lignite and Char of Pine Sawdust

  • Received Date: 8 July 2014
    Available Online: 22 August 2014

    Fund Project:

  • Pine sawdust was torrefied at 200, 300, and 400 ℃ in a muffle furnace, and used with Shengli lignite for co-gasification. Fourier transform infrared (FTIR) spectroscopy indicated that the pine sawdust torrefied at 200 and 300 ℃ contained the functional groups C―O―, ―CH3, and ―OH, while the pine sawdust torrefied at 400 ℃ was similar to lignite, containing the functional groups ―C=C―, ―C=O, and ―OH. That is, when the torrefaction temperature of the pine sawdust increased, the single bonds in functional groups were converted to double bonds. After torrefaction, individual gasification and co-gasification of the lignite and pine sawdust chars were studied and compared in a thermogravimetric analyzer and fixed-bed reactor. It was found that both experimental results were consistent. The gas yield of pine sawdust char by individual gasification was higher when the pretreatment temperature was increased. Co-gasification of pine sawdust torrefied 200 and 400 ℃ with lignite had a positive effect on the product gas yield, carbon conversion, and synergetic efficiency, and the synergetic effects for sawdust torrefied at 200 ℃ were less than those for sawdust torrefied at 400 ℃. In contrast, pine sawdust torrefied at 300 ℃ had some inhibitory effects for co-gasification with lignite. Considering both the thermogravimetric analysis and fixed bed experiments, it is concluded that the synergetic effects can be attributed to the alkali metal and the hydrogen atomin the pine sawdust chars occurring at the pyrolysis stage.

  • 加载中
    1. [1]

      (1) Stelt, van der M. J. C.; Gerhauser, H.; Kiel, J. H. A.; Ptasinski, K. J. Biomass Bioenergy 2011, 35, 3748. (2) Li, J.; Bonvicini, G.; Tognotti, L.; Yang,W. H.; Blasiak,W. Fuel 2014, 122, 261. doi: 10.1016/j.fuel.2014.01.012

    2. [2]

      (3) Chen, Y. Q.; Yang, H. P.; Yang, Q.; Hao, H. M.; Zhu, B.; Chen, H. P. Bioresour. Technol. 2014, 156, 70. doi: 10.1016/j.biortech.2013.12.088

    3. [3]

      (4) Xue, G.; Kwapinska, M.; Kwapinski,W.; Czajka, K.; Kennedy, J.; Leahy, J. J. Fuel 2014, 121, 189. doi: 10.1016/j.fuel.2013.12.022

    4. [4]

      (5) Xu, Y.; Jiang, P.W.; Li, Q. X. Acta Phys. -Chim. Sin. 2013, 29, 1041. [徐勇, 姜沛汶, 李全新. 物理化学学报, 2013, 29, 1041.] doi: 10.3866/PKU.WHXB201302225

    5. [5]

      (6) Deng, J.; Luo, Y. H.; Zhang, Y. L.;Wang, Y. J. Fuel Chem. Technol. 2012, 40, 943. [邓剑, 罗永浩, 张云亮, 王芸. 燃料化学学报, 2012, 40, 943.] (7) Jeong, H. J.; Park, S. S.; Hwang, J. H. Fuel 2014, 116, 465. doi: 10.1016/j.fuel.2013.08.015

    6. [6]

      (8) Lapuerta, M.; Hernandez, J. J.; Pazo, A.; Lopez, J. Fuel Process. Technol. 2008, 89, 828. doi: 10.1016/j.fuproc.2008.02.001

    7. [7]

      (9) Zhang, L.; Xu, S.; Zhao,W.; Liu, S. Fuel 2007, 86, 353. doi: 10.1016/j.fuel.2006.07.004

    8. [8]

      (10) Franco, C.; Pinto, F.; Gulyurtlu, I.; Cabrita, I. Fuel 2003, 82, 835. doi: 10.1016/S0016-2361(02)00313-7

    9. [9]

      (11) Wang, P.;Wen, F.; Bu, X. P.; Liu, Y. H.; Bian,W.; Deng, Y. Y. Coal Conver. 2005, 28, 8. [王鹏, 文芳, 步学鹏, 刘玉华,边文, 邓一英. 煤炭转化, 2005, 28, 8.] (12) Deng, J.; Luo, Y. H.;Wang, G.; Zhang, R. Z.; Kuang, J. H.; Zhang, Y. L. J. Fuel Chem. Technol. 2011, 39, 26. [邓剑, 罗永浩, 王贵, 张睿智, 匡江红, 张云亮. 燃料化学学报, 2011, 39, 26.] (13) Yu, J.; Zhang, M. C.; Shen, T.; Fan,W. D.; Zhou, Y. G. J . Shanghai Jiaotong Univ. 2002, 36, 1475. [于娟, 章明川, 沈轶, 范卫东, 周月桂. 上海交通大学学报, 2002, 36, 1475.] (14) Zhang, L.; Xu, S. P.; Zhao,W.; Liu, S. Q. Fuel 2007, 86, 353. doi: 10.1016/j.fuel.2006.07.004

    10. [10]

      (15) Howaniec, N.; Smolinski, A. Int. J. Hydrog. Energy 2013, 38, 16152. doi: 10.1016/j.ijhydene.2013.10.019

    11. [11]

      (16) Haykiri-Acma, H.; Yaman, S. Renew. Energy 2010, 35, 288. doi: 10.1016/j.renene.2009.08.001

    12. [12]

      (17) Sjostrom, K.; Chen, G.; Yu, Q.; Brage, C.; Rosen, C. Fuel 1999, 78, 1189. doi: 10.1016/S0016-2361(99)00032-0

    13. [13]

      (18) Zhang, K. D. Dynamic Study on Co-gasification of Coal Char and Biomass Char. MD Dissertation, Coal Science Research Institute, Beijing, 2010. [张科达. 煤焦与生物质焦共气化动力学研究[D]. 北京: 煤炭科学研究总院, 2010.] (19) Du, S. H.; Chen,W. H.; Lucas, J. A. Bioresour. Technol. 2014, 161, 333. doi: 10.1016/j.biortech.2014.03.090

    14. [14]

      (20) Wang, G. J.; Luo, Y. H.; Deng, J.; Zhang, Y. L.; Kuang, J. H. Chin. Sci. Bull. 2010, 55, 3451. [王贵军, 罗永浩, 邓剑, 张云亮, 匡江红. 科学通报, 2010, 55, 3451.] (21) Wang, S. R.; Guo, X. J.; Liang, T.; Zhou, Y.; Luo, Z. Y. Bioresour. Technol. 2012, 104, 722. doi: 10.1016/j.biortech.2011.10.078

    15. [15]

      (22) Liu, Q.;Wang, S. R.; Luo, Z. Y. J . Chem. Eng. Jpn. 2008, 41, 1133.


  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    3. [3]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    4. [4]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    5. [5]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    6. [6]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      Huan Zhang Linyu Pu Wei Wang Yatang Dai Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010

    9. [9]

      Zhiguang Xu Xuan Xu Qiong Luo Ganquan Wang Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112

    10. [10]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    11. [11]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    15. [15]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    16. [16]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    17. [17]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    18. [18]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    19. [19]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    20. [20]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

Metrics
  • PDF Downloads(492)
  • Abstract views(874)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return