Citation:
YANG Xiao-Qin, LIU Xue-Jing, LIU Hai-Xiong, YUE Xiao-Ming, CAO Jing-Pei, ZHOU Min. Synergy Effect in Co-Gasification of Lignite and Char of Pine Sawdust[J]. Acta Physico-Chimica Sinica,
;2014, 30(10): 1794-1800.
doi:
10.3866/PKU.WHXB201408222
-
Pine sawdust was torrefied at 200, 300, and 400 ℃ in a muffle furnace, and used with Shengli lignite for co-gasification. Fourier transform infrared (FTIR) spectroscopy indicated that the pine sawdust torrefied at 200 and 300 ℃ contained the functional groups C―O―, ―CH3, and ―OH, while the pine sawdust torrefied at 400 ℃ was similar to lignite, containing the functional groups ―C=C―, ―C=O, and ―OH. That is, when the torrefaction temperature of the pine sawdust increased, the single bonds in functional groups were converted to double bonds. After torrefaction, individual gasification and co-gasification of the lignite and pine sawdust chars were studied and compared in a thermogravimetric analyzer and fixed-bed reactor. It was found that both experimental results were consistent. The gas yield of pine sawdust char by individual gasification was higher when the pretreatment temperature was increased. Co-gasification of pine sawdust torrefied 200 and 400 ℃ with lignite had a positive effect on the product gas yield, carbon conversion, and synergetic efficiency, and the synergetic effects for sawdust torrefied at 200 ℃ were less than those for sawdust torrefied at 400 ℃. In contrast, pine sawdust torrefied at 300 ℃ had some inhibitory effects for co-gasification with lignite. Considering both the thermogravimetric analysis and fixed bed experiments, it is concluded that the synergetic effects can be attributed to the alkali metal and the hydrogen atomin the pine sawdust chars occurring at the pyrolysis stage.
-
Keywords:
-
Lignite
, - Pine sawdust char,
- Co-gasification,
- Synergetic effect
-
-
-
-
[1]
(1) Stelt, van der M. J. C.; Gerhauser, H.; Kiel, J. H. A.; Ptasinski, K. J. Biomass Bioenergy 2011, 35, 3748. (2) Li, J.; Bonvicini, G.; Tognotti, L.; Yang,W. H.; Blasiak,W. Fuel 2014, 122, 261. doi: 10.1016/j.fuel.2014.01.012
-
[2]
(3) Chen, Y. Q.; Yang, H. P.; Yang, Q.; Hao, H. M.; Zhu, B.; Chen, H. P. Bioresour. Technol. 2014, 156, 70. doi: 10.1016/j.biortech.2013.12.088
-
[3]
(4) Xue, G.; Kwapinska, M.; Kwapinski,W.; Czajka, K.; Kennedy, J.; Leahy, J. J. Fuel 2014, 121, 189. doi: 10.1016/j.fuel.2013.12.022
-
[4]
(5) Xu, Y.; Jiang, P.W.; Li, Q. X. Acta Phys. -Chim. Sin. 2013, 29, 1041. [徐勇, 姜沛汶, 李全新. 物理化学学报, 2013, 29, 1041.] doi: 10.3866/PKU.WHXB201302225
-
[5]
(6) Deng, J.; Luo, Y. H.; Zhang, Y. L.;Wang, Y. J. Fuel Chem. Technol. 2012, 40, 943. [邓剑, 罗永浩, 张云亮, 王芸. 燃料化学学报, 2012, 40, 943.] (7) Jeong, H. J.; Park, S. S.; Hwang, J. H. Fuel 2014, 116, 465. doi: 10.1016/j.fuel.2013.08.015
-
[6]
(8) Lapuerta, M.; Hernandez, J. J.; Pazo, A.; Lopez, J. Fuel Process. Technol. 2008, 89, 828. doi: 10.1016/j.fuproc.2008.02.001
-
[7]
(9) Zhang, L.; Xu, S.; Zhao,W.; Liu, S. Fuel 2007, 86, 353. doi: 10.1016/j.fuel.2006.07.004
-
[8]
(10) Franco, C.; Pinto, F.; Gulyurtlu, I.; Cabrita, I. Fuel 2003, 82, 835. doi: 10.1016/S0016-2361(02)00313-7
-
[9]
(11) Wang, P.;Wen, F.; Bu, X. P.; Liu, Y. H.; Bian,W.; Deng, Y. Y. Coal Conver. 2005, 28, 8. [王鹏, 文芳, 步学鹏, 刘玉华,边文, 邓一英. 煤炭转化, 2005, 28, 8.] (12) Deng, J.; Luo, Y. H.;Wang, G.; Zhang, R. Z.; Kuang, J. H.; Zhang, Y. L. J. Fuel Chem. Technol. 2011, 39, 26. [邓剑, 罗永浩, 王贵, 张睿智, 匡江红, 张云亮. 燃料化学学报, 2011, 39, 26.] (13) Yu, J.; Zhang, M. C.; Shen, T.; Fan,W. D.; Zhou, Y. G. J . Shanghai Jiaotong Univ. 2002, 36, 1475. [于娟, 章明川, 沈轶, 范卫东, 周月桂. 上海交通大学学报, 2002, 36, 1475.] (14) Zhang, L.; Xu, S. P.; Zhao,W.; Liu, S. Q. Fuel 2007, 86, 353. doi: 10.1016/j.fuel.2006.07.004
-
[10]
(15) Howaniec, N.; Smolinski, A. Int. J. Hydrog. Energy 2013, 38, 16152. doi: 10.1016/j.ijhydene.2013.10.019
-
[11]
(16) Haykiri-Acma, H.; Yaman, S. Renew. Energy 2010, 35, 288. doi: 10.1016/j.renene.2009.08.001
-
[12]
(17) Sjostrom, K.; Chen, G.; Yu, Q.; Brage, C.; Rosen, C. Fuel 1999, 78, 1189. doi: 10.1016/S0016-2361(99)00032-0
-
[13]
(18) Zhang, K. D. Dynamic Study on Co-gasification of Coal Char and Biomass Char. MD Dissertation, Coal Science Research Institute, Beijing, 2010. [张科达. 煤焦与生物质焦共气化动力学研究[D]. 北京: 煤炭科学研究总院, 2010.] (19) Du, S. H.; Chen,W. H.; Lucas, J. A. Bioresour. Technol. 2014, 161, 333. doi: 10.1016/j.biortech.2014.03.090
-
[14]
(20) Wang, G. J.; Luo, Y. H.; Deng, J.; Zhang, Y. L.; Kuang, J. H. Chin. Sci. Bull. 2010, 55, 3451. [王贵军, 罗永浩, 邓剑, 张云亮, 匡江红. 科学通报, 2010, 55, 3451.] (21) Wang, S. R.; Guo, X. J.; Liang, T.; Zhou, Y.; Luo, Z. Y. Bioresour. Technol. 2012, 104, 722. doi: 10.1016/j.biortech.2011.10.078
-
[15]
(22) Liu, Q.;Wang, S. R.; Luo, Z. Y. J . Chem. Eng. Jpn. 2008, 41, 1133.
-
[1]
-
-
-
[1]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[2]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[3]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[4]
. . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.
-
[5]
Zhening Lou , Quanxing Mao , Xiaogeng Feng , Lei Zhang , Xu Xu , Yuyang Zhang , Xueyan Liu , Hongling Kang , Dongyang Feng , Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089
-
[6]
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
-
[7]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[8]
Huan Zhang , Linyu Pu , Wei Wang , Yatang Dai , Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010
-
[9]
Zhiguang Xu , Xuan Xu , Qiong Luo , Ganquan Wang , Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112
-
[10]
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
-
[11]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[12]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[13]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[14]
Shipeng WANG , Shangyu XIE , Luxian LIANG , Xuehong WANG , Jie WEI , Deqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094
-
[15]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[16]
YanYuan Jia , Rong Rong , Jie Liu , Jing Guo , GuoYu Jiang , Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035
-
[17]
Xingyuan Lu , Yutao Yao , Junjing Gu , Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074
-
[18]
Supin Zhao , Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024
-
[19]
Yaqin Zheng , Lian Zhuo , Meng Li , Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119
-
[20]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[1]
Metrics
- PDF Downloads(492)
- Abstract views(874)
- HTML views(65)